Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Макроциклы

    Аналогичными свойствами обладают макроциклы, содержащие атомы азота или серы [55], например соединения 7 и 8 [56], а также макроциклы, содержащие разные гетероатомы, например соединения 9 [57], 10 [58] или 11 [59]. Бициклические моле- [c.121]

    Циклы с числом звеньев меньше пяти сильно напряжены вследствие высокого углового напряжения, а именно, больших искажений их валентных углов по сравнению с тетраэдрическим, поэтому циклизация трех- и четырехчленных колец маловероятна. Наименьшую напряженность имеют шестичленные циклы. Возможно также образование пяти- и семичленных циклов. Наличие циклов с большим, числом звеньев (более 12) ранее считалось практически маловероятным, ввиду того, что их напряженность примерно равна напряженности линейных полимеров [9, с. 75]. Однако в последнее время было показано, что в зависимости от условий проведения равновесной поликонденсации диэтиленгликоля и адипиновой кислоты в отсутствие катализатора наблюдается образование макроциклов, характеризующихся распределением по молекулярным массам, величина которых изменяется от 200 до 1000 [18]. [c.161]


    Нельзя исключить при этом образование макроциклов с ди-и полисульфидными связями. Но эти соединения в условиях проведения процесса легко полимеризуются с раскрытием цикла, образуя высокомолекулярные цепные молекулы [11, 12]. Возможно, что и это обстоятельство способствует получению полисульфидных полимеров с высокой молекулярной массой. [c.555]

    Методы получения пяти- и щестичленных карбоциклов, средних циклов и макроциклов рассмотрены ниже. [c.504]

    Схема 1. Образование макроциклов СНг СН СН Ш [c.107]

    Реакция (9) конкурирует с реакцией образования цепных молекул с концевыми 5Н-группами, и направление реакции определяется условиями ее проведения. Жидкие тиоколы, как правило, содержат некоторое количество макроциклов общей формулы (—К—5—8—) , где п — 1—7. [c.557]

    Исследование процесса циклообразования при вулканизации жидких тиоколов с применением двуокиси свинца показало, что при этом образуются не только девятичленные циклы, а также макроциклы с молекулярной массой до 1000 и более [31]. [c.563]

    Возможно включение линейных двух- и трехатомных субстратов, таких, как СО, N0, О2 или N3- Ионы металла находятся внутри макроциклического лиганда, причем каждый из них связан с несколькими донорными группами N 2, а также с расположенным в центре макроцикла субстратом (4 молекулы в случае Поскольку некоторые металлопротеины используют двухъядерные металлические центры для осуществления каталитической функции, то данная модель имитирует медные пары третьего типа в медьсодержащих ферментах. В двухъядерном Си (II)-комплексе расстояние Си—Си оценивается в 0,52 нм. Интересно, что этот комплекс обнаруживает антиферромагнетизм и является диамагнитным при комнатной температуре. [c.380]

    Порфирины содержат тетрапиррольный макроцикл, показанный на формуле (33) коррины имеют сходную структуру, но лищенную одного мостикого атома углерода, как показано на формуле (34). Порфирины известны давно, в виде геминов (ге- [c.189]

    Исходный макроцикл (субстрата 44) был получен по реакции Торпа — Циглера (т. 3, реакция 16-48), поскольку попытка проведения ацилоиновой конденсации оказалась неудачной. 05, II, 114 IV, 840 57, 1. [c.336]

    Соединения со средними циклами (8—11 звеньев) не являются просто промежуточными между обычными и макроциклами. В то время как обычные и макроциклы в общем мало отличаются по своему химическому поведению от соответствующих алифатических соединений, предельных или непредельных, средние циклы обладают особенностями, характерными только для них одних, не повторяющимися ни в каком другом классе органических соединений. Обзоры о средних циклах см. [84]. [c.368]


    Наконец, нефть можно рассматривать как потенциальный источник порфириновых соединений для технических целей. Нефтяные порфирины могут применяться в качестве катализаторов, полупроводниковых композиций, сенсибилизаторов, красителей и т, п., т. е. практически во всех областях, где используются особенности свойств порфинного макроцикла и не требуется строго индивидуальных соединений. [c.158]

    В отличие от алканов, атомы углерода которых образуют цепи, для циклоалканов характерно циклическое расположение атомов углерода. В зависимости от размера цикла циклоалканы подразделяют на малые (Сз, С4), нормальные (от С5 до С ), средние (от Сз до Сц) и макроциклы (от Сц и более) [49]. В основе этой классификации лежит зависимость между размером цикла и существующими в нем напряжениями, влияющими на стабильность. [c.29]

    Книга посвящена краун-соединениям — новым необычайно перспективным веществам с уникальными свойствами, находящим все более широкое практическое применение (в аналитической химии, в органическом анализе, в биоорганической химии, в качестве катализаторов и др.). Описаны методы синтеза макроциклов, их применение в различных областях. Приведены справочные данные по стоуктуре образующихся комплексов. [c.488]

    Для обнаружения порфиринов с незамещенными -положе-ниями в порфипном макроцикле и определения их количественного распределения использован метод селективного бромирования с последующим МС анализом образовавшихся бромидов [357]. [c.42]

    Анализ продуктов окисления с помощью ГЖХ [403] или реакционной ГЖХ [404] позволяет точно установить природу алкильных заместителей в норфинном макроцикле. [c.45]

    Поскольку масс-спектрометрия молекулярных ионов не может дать информации о характере распределения заместителей по пор-фиыному макроциклу, ведется поиск методов более детального изучения состава порфириновых концентратов. [c.150]

    В особый тин нефтяных внутримолекулярных металлокомплексов исследователи выделяют так называемые исевдоиорфири-ны. Под этим термином объединяются мономолекулярные тетра-пиррольные лиганды с нарушенным по сравнению с порфином я-электронным сопряжением по макроциклу. Такое нарушение может быть вызвано дополнительной ароматической системой заместителей (I), включением порфинного цикла в конденсированные полиароматические структуры (II), частичным гидрированием с образованием хлориновых (III) или еще более гидрированных циклов, а также полным разрывом макроцикла до линейных структур тппа желчных пигментов (IV) [8, 893]. [c.165]

    N1, Ге, Со, Сг, Мп, 2п, Си, Hg, ЗЬ, Аз, галогены и многие другие элементы. Часть металлов входит в состав ВМС нефти в форме солей органических кислот и хелатных комплексов, в которых атом металла размещен в центре. порфинного макроцикла или в иных пустотах, могущих образовываться внутри крупных конденсированных ароматических систем однако основная масса металлов содержится в смолисто-асфальтовых веществах в виде сложных полидентатных комплексов [8], образование которых также способствует укрупнению макромолекул вплоть до коллоидных размеров. Многие из таких комплексов обладают сравнительно невысокой прочностью и легко обменивают содержащиеся в них атомы металлов на микроэлементы, присутствующие в растворителях или на поверхностях материалов, с которыми контактируют ВМС при их выделении или фракционировании [1008]. Это обусловливает значительные трудности определения истинного микроэлементного состава нативных нефтяных фракций и выявления закономерностей распределения микроэлементов в нефтях. [c.191]

    Особо следует отметить, что реакция диспропорционирования применима и к циклическим олефинам, что позволяет получать этим методом макроциклы, а в случае применения этенолиза — диеновые линейные структуры с положением двойных связей у концевых углеродных атомов. [c.441]

    Комплексы ванадила с тетрадентатными лигандами, имеющие смешанные донорные атомы. Примерами являются р-кето-имины (рис. 26), р-дикетоны, о-меркаптоанилы и р-дитионы. В смолах обнаружены молекулы, содержащие различные сочетания гетероатомов 4Ы, 2Ы- -20, 30+ 15, 45, 35 + Ш, 25 + 2Ы. Отличиями первых является повышенная ароматичность или отсутствие сопряжения в макроцикле, высокая устойчивость к де-металлированию под действием кислот. Отличие вторых — полное отсутствие ароматичности и легкость кислотного деметаллиро-вания. [c.305]

    Различия в химическом поведении циклоалканов часто обусловлены наличием избыточной энергии напряжения. В зависимости от размеров цикла циклоалканы подразделяют на малые (Сз, С4), нормальные (С5-С7), средние (Са-Сп) и макроциклы (от и [c.13]

    Используемая для краун-эфиров сокращенная номенклатура довольно проста первое число означает общее число атомов в кольце, а второе — общее число гетероатомов. Легко усмотреть аналогию между такими комплексами, имеющими полость для связывания лиганда Ь, и активным центром фермента, специфически узнающим свой субстрат. Размер макроцикла может меняться и тем самым обеспечивать связывание лигандов разных размеров. Циклические полиэфиры типа краун сравнительно легко можно получить и подвергнуть разнообразным структурным модификациям. Эту область химии Крам предложил назвать химией до-норно-акцепторного комплексообразования [134—136]. Напомним также о гипотезе замка и ключа , предложенной Фишером в 1894 г. для описания структурного соответствия между ферментом и его субстратом в ферментсубстратном комплексе. Помимо ферментативного катализа и ингибирования комплексообразование играет первостепенную роль в таких биологических процессах, как репликация, хранение и передача генетической информации, иммунный ответ и транспорт ионов. В настоящее время накоплено уже достаточно сведений о структуре таких комплексов, чтобы подтолкнуть химиков-органиков к созданию высокоструктурированных молекулярных комплексов и к изучению специфического химизма процессов комплексообразования. [c.266]


    Очень важная группа ионоселективиых электродов с жидкими мембранами основана на использовании особого класса комплексообразующих реагентов — ионных переносчиков, или ионофоров. Так в калиевом электроде используют макроцикли-ческий антибиотик — валиномицин, образующий прочный комплекс с калием, и гидрофобный катион тетрафенилбората. Такой электрод чувствует калий даже при избытке натрия в 10 раз. [c.244]

    После многочисленных попыток создать хиральные краун-эфиры оказалось, что желаемые свойства появляются при введении в качестве заместителя в 2,2 -положения макроцикла 1,1 -би-нафтильной группы. Нафталинсодержащая система, выбранная из практических и общих соображений, придает обычным циклическим полиэфирам жесткость и липофильность. Синтез такого акцептора приведен на рис. 5.2. [c.267]

    Термины трехцентровое связывание и четырехцентровое связывание используются для обозначения конфигурации взаимного расположения донора и акцептора. Названия не совсем правильны и недостаточно полно отражают суть дела, но удобны и поэтому широко используются [136]. В то же время они устанавливают наиболее стабильный диастереомер и указывают на возможную главную структурную особенность, обусловливающую различия в стабильности двух диастереомеров. Приведенные проекции Ньюмена показывают, что в обеих моделях донорная молекула связывается с (5,5)-акцептором тремя водородными связями между NH-гpyппaми и эфирными кислородами макроцикла. Три заместителя (малый, средний и большой) у асимметрического атома углерода распределены в пространстве таким образом, чтобы свести к минимуму влияния стерических факторов. Модель четырехцентрового связывания включает дополнительное диполь-дипольное взаимодействие с эфирной группой в результате стэкинга ароматических колец донора и акцептора. Тем не менее модель трехцентрового связывания стерически более устойчива. Причина заключается в том, что введение заместителей в 3- и З -положения делает комплекс более громоздким, а систему более селективной, благоприятствуя реализации модели трехцентрового связывания. Другими словами, когда комплекс становится более тесным из-за увеличения стерической затрудненности донора или акцептора, комплексообразование становится более стереоселективным. Вследствие этого (5,5)-акцептор склонен к выбору в качестве донорной молекулы 5-изомера. Отношение констант ассоциации диастереомеров может доходить до 18. [c.271]

    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]

    В этом комплексе наблюдается повышенная скорость переноса Н к пиридиниевой соли субстрата. Это первый пример ускоренного Н-переноса (гранс-восстановления) от 1,4-дигидропириднна к ниридиннй-иону в синтетическом молекулярном макроцикли-ческом рецептор-субстратпом комплексе. Значит, такой синтетический катализатор обнаруживает некоторые характерные свойства, присущие ферментам. Он обеспечивает как акцепторный центр для связывания субстрата, так и активный центр для превращения связанного субстрата. Следовательно, он интересен и как ферментативная модель, и как представитель нового типа эффективных и селективных химических агентов [278]. [c.405]

    Т. IV, ч. 2. Общие химические методы (катализ, пирохимические и электрохимические реакции, получение оптически активных соединении из оптически неактивных, получение соединений, содержащих изотопы, получение и превращение макроцикли-ческих колец, биохимические реакции). [c.231]

    Интерес к комплексам макроциклов вызван несколькими причинами. Наличие в лигандах полостей почти фиксированного размера приводит к тому, что слишком малые катионы либо скатываются в один из углов полости и координируют лишь часть донорных атомов, либо координируют все атомы, но длины связей при этом аномально велики. Слишком большие катионы не могут войти в полость комплекс, если он образуется, имеет пирамидальную полусэндвичевую конфигурацию. В обоих случаях устойчивость комплекса оказывается уменьшенной по сравнению с комплексом катиона, точно соответствующего геометрическим размерам полости. Таким образом, создается возможность резкого усиления избирательности комплексообразования. Лиганды [2.1.1], [2.2.1J, [2.2.2], имеющие полости радиусом 0,08, [c.130]

    Информативность метода увеличивается, если определять энергии электронов на атомах и металла, и лигандов. Определение энергии связи 1б -электронов на атомах лиганда и 2р-электронов центрального нона в комплексах [Со1тЛ2(02) ] позволило определить структуру активного центра металл—молекулярный кислород, степень окисления кобальта в оксигенированном и деокси-генированном комплексах, установить изменеиие ЭСЭ на различных фрагментах комплексов при вхождении в исходный комплекс различных лигандов. Аналогичные исследования комплексов -металлов с макроциклами, содержащими четыре атома азота, по измерению методом РЭС энергии связи 1.ч-электронов атомов азота и 2р-электронов ионов металлов позволили выяснить зависимость этой энергии от заместителей в макроцикле, от типа взаимодействия металл— донорный атом макроцикла и от природы аксиальных лигандов. [c.261]

    Величина цикла может быть разной наименьший содержит три атома, а наибольший известный — несколько десятков атомов. Кольца с 3 и 4 атомами называют малыми, с 5—7 атома ми — обычными, с 8—11 атомами —средними, с еще большим числом атомов — большими. В последнем случае используется также название макроциклы. Циклические соединения, содержащие в циклах только атомы углерода, называются гомоцик-лическими или карбоциклическими. [c.14]

    Циклические системы принято делить по числу звеньев в цикле на четыре группы малые циклы — трех-четырехзвен-ные обычные циклы — пяти-семизвенные средние циклы — восьми-одиннадцатизвенные макроциклы — циклы, имеющие более 11 звеньев в цикле. Малые и обычные циклы часто объединяют также под названием классических, а средние и большие — под названием многозвенных. Большой интерес представляют также разнообразные би- и полициклические структуры. [c.315]


Смотреть страницы где упоминается термин Макроциклы: [c.160]    [c.320]    [c.321]    [c.150]    [c.156]    [c.157]    [c.14]    [c.184]    [c.275]    [c.380]    [c.380]    [c.24]    [c.141]    [c.415]    [c.120]    [c.370]   
Смотреть главы в:

Стереохимия -> Макроциклы


Начала органической химии Книга первая (1969) -- [ c.0 ]

Общая органическая химия Т.1 (1981) -- [ c.62 ]

Основы стереохимии (1964) -- [ c.99 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.533 ]

Химия привитых поверхностных соединений (2003) -- [ c.14 , c.366 , c.421 , c.443 , c.445 , c.493 ]




ПОИСК







© 2024 chem21.info Реклама на сайте