Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитробензол восстановительный потенциал

    Восстановительный потенциал нитробензола равен примерно —1 В (—1,06 в ДМФ и —1,1 В в ацетонитриле по отношению к стандартному каломельному электроду) [14], а потенциал иодбензола, который имеет самый положительный восстановительный потенциал из четырех галогенбензолов, лежит от —1,6 до —1,8 В в ДМСО по отношению к стандартному каломельному электроду [14], что делает реакцию (23) (Х=1) термодинамически невыгодной (примерно на 0,6 В). Следует ожидать, что эта реакция будет медленной и окажется не в состоянии осуществлять развитие цепи со скоростью, достаточной для прохождения реакции. [c.72]


    Анодными деполяризаторами слул<ат разные восстановители. Перенапряжение, влияя на характер электрохимических процессов, дает возможность его регулирования. Например, цинк, никель и железо имеют отрицательные электродные потенциалы по отношению к водороду. Одпако благодаря перенапряжению при достаточно больших плотностях тока водород перемещается по ряду напряжений выше этих металлов, и становится возможным выделение их электролизом из водных растворов. Перенапряжение водорода равносильно перемещению его в ряду напряжений в отрицательную область и повышению его восстановительного потенциала. Это имеет большое значение для реакций электрохимической гидрогенизации органических соединений. Изменением плотности тока и материала катода можно регулировать величину перенапряжения водорода и, следовательно, его восстановительный потенциал. Так, при электрохимической гидрогенизации нитробензола в зависимости от условий процесса возможно получение анилина и ряда промежуточных продуктов—азокси-бензола, азобензола и гидразобензола. На катодах из свинца, цинка или ртути благодаря перенапряжению водорода оказывается возможным восстановление СО2 до муравьиной кислоты, ацетона до спирта. Перенапряжение кислорода на аноде повышает окислительный потенциал, способствуя реакциям анодного окисления. [c.167]

    Было предложено несколько теорий относительно влияния потенциала на ход электродного процесса. Наиболее приемлемым является положение, утверждающее, что с повышением катодного потенциала увеличивается потенциальная энергия атомов водорода, выделяющихся на поверхности электрода. Поэтому на данном электроде можно получить восстановленные атомы водорода с различной энергией путем изменения катодного потенциала. Таким образом, восстановительная способность катода зависит от его потенциала чем выше потенциал, тем выше восстановительная активность. Так, можно ожидать, что кетон или альдегид может быть восстановлен до спирта при более низком катодном потенциале, чем требуется для получения свободных радикалов с последующим восстановлением в бимолекулярной реакции до пинакона [11. Габер и другие авторы [2, 3] показали, что при восстановлении нитробензола можно получать продукты различной степени восстановления путем изменения катодного потенциала. Другая точка зрения исходит из экспериментальных исследований Эйринга с сотрудниками [4], которые показали, что металлы с низким перенапряжением образуют прочную металл-водородную связь, а с высоким перенапряжением—относительно слабую. Это представление можно распространить и на протоны. Так, [c.58]


    Катионы фона — ионы двухвалентных щелочноземельных металлов — оказывают также существенное влияние на электровосстановление нитробензола и 3-нитропиридина в диметилформамиде [33]. В присутствии двухвалентных катионов кальция, бария и магния на поверхности электрода образуются отложения их соединений с анион-радикалами (NB ,M ), где NB — нитробензол. В присутствии щелочных металлов — катионов фона — наблюдаются две волны, а на фоне солей щелочноземельных металлов — только одна четырехэлектронная (из-за неустойчивости анион-радикалов, образующихся на первой стадии процесса). Но в хорошо осушенном растворителе все же удается наблюдать разделение волн на фоне двухвалентных катионов, особенно на пульс-полярограммах. На циклических кривых с достаточно большими скоростями сканирования потенциала — более 0,1 в сек — для них можно наблюдать анодный пик, отвечающий окислению NB . Различие между потенциалами ников и -Ё рк зависело от природы катионов 70 и 150 мв для перхлоратов бария и магния соответственно. Столь большое различие объяснялось образованием новой окислительно-восстановительной пары нитрозобензол — анион-радикал нитрозобензола NOB/NOB , которая стабилизировалась в присутствии кальция и бария, но была неустойчивой в присутствии одновалентных катионов фона. [c.110]

    Большое положительное значение перенапряжения можно показать на примере электрохимического выделения водорода. Электродные потенциалы цинка, кадмия, железа, никеля, хрома и многих других металлов в ряду напряжения имеют более отрицательную величину равновесного потенциала по сравнению с потенциалом водородного электрода. Благодаря перенапряжению водорода на указанных выше металлах при электролизе водных растворов их солей происходит перемещение водорода в ряду напряжений в область более отрицательных значений потенциала и - становится возможным выделение многих металлов на электродах совместно с водородом с большим выходом металла по току . Так, выход по току при электролизе раствора 2п504 более 95%. Это широко используется в гальванотехнике при нанесении гальванических покрытий и в электроанализе. Изменением плотности тока и материала катода можно регулировать перенапряжение водорода, а значит и восстановительный потенциал водорода и реализовать различные реакции электрохимического синтеза органических веществ (получение анилина и других продуктов восстановления из нитробензола, восстановление ацетона до спирта и др.). Перенапряжение водорода имеет большое значение для работы аккумуляторов. Рассмотрим это на примере работы свинцового аккумулятора. Электродами свинцового аккумулятора служат свинцовые пластины, покрытые с поверхности пастой. Главной составной частью пасты для положительных пластин является сурик, а для отрицательных — свинцовый порошок (смесь порошка окиси свинца и зерен металлического свинца, покрытых слоем окиси свинца). Электролитом служит 25—30% серная кислота. Суммарная реакция, идущая при зарядке и разрядке аккумуляторов, выражается уравнением [c.269]

    Из неорганических реагентов применяют соединения ртути(1), Н2О2, соль Мора, Sn lj, которые восстанавливают золото (I, III) до элементного. Иногда для обнаружения золота получают перлы сплавлением образца с метафосфатом натрия. Используют реакции образования интенсивно окрашенных продуктов окисления реагентов [ферроцианид в присутствии нитробензола, Мп(П) в среде пирофосфата]. Многочисленны методы обнаружения ионов Au(III), основанные на окислении органических реагентов до интенсивно окрашенных продуктов. Эти реакции высокочувствительны, однако малоселективны, так как мешают все сильные окислители. Кроме того, очень часто мешают анионы, образующие с ионами Au(III) комплексные анионы и тем самым снижающие окислительно-восстановительный потенциал Au(IlI)/Au(I) или Au(III)/Au(0). [c.64]

    Этот механизм имеет некоторое сходство с механизмом 5ны1 отличие заключается в том, что донором электронов служит Си°, а акцептором — Си+. Восстановительный потенциал нитробензола равен примерно —1 В (в ДМФ по отношению к стандартному каломельному электроду) [14], а восстановительный потенциал тетрафторбората фенилдиазония равен +0,3 В (в сульфолане по отношению к стандартному каломельному электроду) [15] следовательно, реакция (18) термодинамическибла- [c.70]


Смотреть страницы где упоминается термин Нитробензол восстановительный потенциал: [c.253]    [c.269]    [c.584]    [c.49]   
Ароматическое замещение по механизму Srn1 (1986) -- [ c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Нитробензол



© 2025 chem21.info Реклама на сайте