Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волна разделение

    Излучение, испускаемое твердыми телами или жидкостями, всегда дает сплошной спектр. Излучение, испускаемое раскаленными газами и парами, в отличие от излучения твердых тел и жидкостей, содержит только определенные длины волн. Поэтому вместо сплошной полосы на экране получается ряд отдельных цветных линий, разделенных темными промежутками. Число и расположение этих линий зависят от природы раскаленного газа или пара. Так, пары калия [c.63]


    Однако для этого необходимо, чтобы отсутствовало какое-либо взаимодействие между отдельными компонентами смеси, в результате которого возможно изменение их индивидуальных поглощающих свойств. Аддитивность оптических плотностей дает возможность проводить анализ многокомпонентных систем без предварительного разделения компонентов. Для определения концентрации п компонентов составляют систему из п уравнений и измеряют оптические плотности раствора при п длинах волн. Решить эту систему можно, зная е каждого компонента при всех этих длинах волн. [c.466]

    Призма 7 (см. рис. 19) поворачивается вращением барабана / (рис. 20). При помощи индекса на выдвижной рейке 2 по спиральной шкале, имеющей десять витков, разделенной на 3600°, можно установить такое положение призмы, прн котором выходной щелью будет вырезаться монохроматический свет с определенной длиной волны. Ножи [c.33]

    Поверхность жилы с нерегулярной неровностью, вызывая излучение из волокна, обусловливает связь между различными типами волн. Разделение явления связи волн и излучения, как было сделано в данной работе, не всегда возможно. Если в волокне распространяется только один тип волны, анализ будет абсолютно точным. Однако и в случае, если по волокну распространяется большое число типов волн, этот анализ может быть использован для характеристики светопропускания. При рассмотрении одного лишь явления излучения можно сделать вывод чтобы свести [c.247]

    Спектры, содержащие все- длины волн в довольно широкой -спектральной области, называются непрерывными и могут быть как спектрами излучения, так и спектрами поглощения. В прерывистом, или дискретном, спектре излучения или поглощения имеются лишь группы длин волн, разделенные полосами, которые-, показывают отсутствие излучения или поглощения. [c.9]

    Целью работы являлась разработка методов синтеза замещенных о-нитробензиловых спиртов, получение на их основе полимеров, чувствительных к длине волны ультрафиолетового света. На основании анализа литературных данных и проведенных исследований можно сделать вывод, что наиболее доступным методом синтеза замещенных о-нитробензиловых спиртов является нитрование бензил-ацетата, бензилхлорида, л<-замещенных аналогов толуола с последующим преобразованием продуктов нитрования. Предложены усовершенствованные методы получения замещенных о-нитробензиловых спиртов и методы разделения изомеров. [c.54]


    В природных условиях волны представляют собой сумму налагающихся друг на друга простых колебаний, распространяющихся в одном или в разных направлениях и имеющих различные высоты и периоды. При наложении волн (интерференции) с различными элементами возникает явление, называемое биением. Основными причинами образования групп больших волн, разделенных полосами меньших волн, служат пульсация скорости ветра и различия скоростей отдельных волн. Догоняя друг друга и интерферируя, они образуют группы. Групповые волны начинают исчезать при преобразовании ветровых волн в волны зыби. Так как волны бегут группами, возникло представление о девятом вале . В разных районах Мирового океана самыми крупными могут быть третий, седьмой и одиннадцатый или п-ный, в том числе и девятый, вал. Закономерность в чередовании крупных результирующих и мелких волн определяется ветровыми и геоморфологическими условиями. В случае большой глубины моря скорость перемещения результирующей волны, называемая групповой скоростью и равная [c.117]

    Схема 4. При работе схемы типа спичка (рис. 7.7) реакционный процесс ведут в слое катализатора, разделенном на две неравные части Л1 яА . Часть слоя Ах служит для периодического нагрева слоя А . Например, на предварительно нагретый до достаточно высокой температуры слой катализатора Ах и А подается исходная реакционная смесь с низкой входной температурой. Направления фильтрации реакционной смеси показаны стрелками (см. рис. 7.7, а). При этом в каждой части слоя Ах и А2 возникают две тепловые волны Ох и Ьх, которые перемещаются в направлениях фильтрации смеси. Задвижка 1 закрыта, задвижка 3 открыта, а задвижка 2, открытая не полностью, регулирует скорость фильтрации и, следовательно, скорость движения тепловой волны в слое и А . Через некоторое время волны займут положение 02 и Ьа (см. рис. 7.7, б), после чего задвижка 1 открывается и исходная реакционная смесь последовательно проходит через слои Ах я А2 в направлении, указанном штриховыми стрелками. Через некоторое время тепловая волна 2 займет положение, показанное на рис. 7.7, б. В этот момент начинается подача реакционной смеси между слоями Ах и А , что обеспечивается переключением задвижек 1—3. При этом задвижка 1 закрывается, а 3 — открыта, задвижка 2 открыта не полностью, регулируя скорость фильтрации смеси (а следовательно, и скорость движения волны Ьх) в слое Ах. Это приводит к образованию двух фронтов и Ь . Цикл повторяется. Таким образом, слой Ах служит для периодического нагрева части слоя А , на котором затем происходит превращение исходной реакционной смеси. [c.294]

    Значительный технологический эффект может быть получен от воздействия на мембранные системы таких внешних факторов, как электрические и магнитные поля, ультразвуковые волны и т. д. Более того, изучение влияния этих факторов на характеристики процесса разделения позволит полнее вскрыть механизм обратного осмоса и ультрафильтрации. [c.169]

    Входной и выходной патрубки буферной емкости следует располагать под углом друг к другу, избегая распространения прямой или круто отраженной акустических волн из одного патрубка в другой. При осевом положении входного патрубка выходной следует помещать перпендикулярно к оси емкости (см. рис. IX.42). Буферные емкости шаровидной формы (см. рис. IX.43) способны более полно гасить колебания давления, чем цилиндрические. Принцип действия акустического фильтра основан на интерференции звуковых волн. Простейшим акустическим фильтром (резонатором) служит параллельный трубопровод (обычно небольшого сечения), длина которого отличается от основного на половину длины звуковой волны той частоты, которую требуется погасить. В отличие от буферной емкости, акустический фильтр, показанный на рис. VI,42, разделен перегородкой на две неравные полости, сообщающиеся посредством труб, открытых с концов и с отверстиями по длине. Такие же отверстия имеют концы входной и выходной труб, введенных в противоположные [c.275]

    Фильтры и монохроматоры. Светофильтры, используемые для выделения необходимой спектральной области источника света, так называемые первичные фильтры, не должны пропускать свет в области, где измеряется люминесценция, и, наоборот, пропускать как можно больше света в области поглощения объекта. Длинноволновая граница пропускания светофильтров должна быть несколько смещена в коротковолновую сторону по сравнению с самым длинноволновым максимумом поглощения. Фильтры, использующиеся для выделения флуоресценции, так называемые вторичные фильтры, должны отсекать весь рассеянный возбуждающий свет и пропускать весь свет флуоресценции. В качестве первичных и вторичных фильтров используются стеклянные фильтры из цветного стекла. В качестве вторичных фильтров могут использоваться клееные стеклянные фильтры и интерференционные-фильтры. Первые состоят из двух стеклянных пластинок и заключенного между ними слоя желатины, окрашенной органическими красителями. Под действием интенсивного облучения эти фильтры со временем портятся. Интерференционный фильтр представляет собой стеклянную пластинку, на которую нанесены две (или более) полупрозрачные металлические пленки, разделенные слоем прозрачного вещества. Для защиты металлического слоя на него наклеивается еще одна стеклянная пластинка. Расстояние между металлическими пленками определяет длину волны света, проходящего сквозь фильтр. Свет, половина длины волны которого равна расстоянию между пленками, пройдет через фильтр, а свет с любой другой длиной волны отразится. Интерференционные фильтры также разрушаются от интенсивного облучения. [c.65]


    Предлагаемый в данной работе подход относится к феноменологическим, т.к. система, поглощающая излучение, рассматривается как единое целое, а переходы электронов с одного уровня на другой во внимание не принимаются. Такое необычное направление в электронной спектроскопии определено нами, как электронная феноменологическая спектроскопия (ЭФС). Вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных групп или компонентов системы. Известно, что электронное строение веществ определяет его физико-химические свойства [5]. В свою очередь, электронные спектры также определяются конфигурацией электронных оболочек. Отсюда следует, что электронные спектры поглощения могут быть применены для определения физико-химических свойств. [c.84]

    Акустические волны, применяемые в различных технологических процессах, преобразуются с высоким КПД в энергию других форм механического движения в многофазной среде. Это увеличение скоростей движения жидкостей и газов в капиллярах и пористых средах, турбулизация многофазных систем, интенсификация тепломассообменных процессов и процессов горения, диспергирования, фильтрации и разделения многофазных систем. [c.27]

    Сущность работы. Одновременное определение натрия, калия и кальция основано на существенном различии спектров излучения этих элементов, возбужденных в пламени горелки длина волны излучения атомов натрия равна 589, калия - 768, кальция 622 нм. Это позволяет выполнять анализ смеси указанных элементов без их разделения. Метод добавок дает возможность проводить определение каждого из элементов в растворах сложного состава. [c.205]

    Полярографические волны различных веществ развиваются независимо друг от друга, так что при разнице в значениях 1/3 порядка 200 мВ возникают хорошо разделенные кривые, позволяющие анализировать смесь веществ. [c.281]

    Другой тип энергетических потерь в диэлектриках связан с электронной Рэл и атомной Рат поляризациями, обусловленными смещениями (ток смещения) под действием электрического поля электронов, ядер, ионов или атомных групп (резонансное поглощение). Для практического применения диэлектриков представляет интерес рассмотрение деталей перехода от установившейся полной поляризации при низких частотах к поляризации при оптических частотах, так как они непосредственно связаны с разделением поляризации при низких частотах на ее составляющие ориентационную и деформационную (атомную и электронную). Резонансные потери проявляются при частотах Ю —10 Гц (миллиметровая и инфракрасная области длин волн). Существование их у полимеров обусловлено наличием собственных колебаний атомных групп. Некоторые полосы поглощения в инфракрасной области связаны с трансляционными движениями диполей. Характер изменения потерь энергии при этом имеет сходство с соответствующими зависимостями при дипольной релаксации. Мнимая составляющая " обобщенной диэлектрической проницаемости е изменяется в окрестности резонансной частоты примерно так же, как и при дипольной релаксации (проходит область максимума), хотя потери энергии в этом случае имеют другую природу и требуют иного аналитического описания. В то же время диэлектрическая проницаемость е при дипольной релаксации и резонансном поглощении изменяется ио-разному. [c.178]

    ИСХОДИТ разделение волн. На рис. Д. 103 приведены полярограммы смеси Т1+ и РЬ + в различных средах а) 0,1 н. НЫОз (оба потенциала полуволн равны —0,50 В) б) 1 н. КОН ((е1/а)т1+ = ( =—0,50 В, (е1/2)рь= +=—0,81В). Смещение потенциала для . РЬ + связано с образованием комплекса [РЬ(ОН)з] . [c.287]

    Оба типа максимумов мож.но подавить добавлением небольших количеств поверхностно-активных веществ, таких, как желатин, крах,мал и др. Аналогичное действие оказывают многие другие высокомолекулярные соединения. Например, уксус, получаемый при брожении, дает две волны восстановления кислорода (/ и 2, кривая б рис. Д.100), а синтетический уксус кривая а — только один ярко выраженный максимум в области 1-й волны. Это можно использовать для их разделения. [c.292]

    Из приведенного графика (рис. 1.17) видно, что максимальное температурное разделение (Ato = 6,5°С) в трубке Г-Ш получается тогда, когда 20% нагретого газа выводится из трубки через вентиль (3) в ее торце. Использование трубки для охлаждения в таком виде малоэффективно, что обусловлено, главным образом, трудностями в выделении охлажденного потока из общей массы газа, прошедшего через сопловой ввод. Для случая нагрева в тонкостенной плохо проводящей тепло трубке с //d = 34 температура газа в полости трубки может на сотни градусов превышать температуру торможения возбуждающего потока. В работе [21] отмечается, что при степени расширения л = 5 и температуре перед сопловым вводом 20°С в конце трубки воздух нагревался до 500°С, а при наличии пыли, взвешенной в воздухе, отмечали температуры до 1000°С. Основной эффект нагрева в данном устройстве осуществляется за счет ударно-волно-вых процессов. При обтекании газовым потоком цилиндра более резкое снижение температуры обусловлено, кроме сказанного, значительными перепадами давления, затрачиваемого на сужение и расширение потока, созданием неустойчивого течения за цилиндром. Возникающие при этом пульсация, циркуляционные вихри, находящиеся в состоянии тепло- и массообмена с основным потоком, обусловливают большее понижение температуры по сравнению с обтеканием пластины. Необходимо отметить, что излучение звуковых колебаний в окружающую среду имеет место и в вихревой трубе. Кроме того, экспериментально доказано, что в вихревой трубе течение неустойчиво и возникают регулярные колебания давления. Нами было показано, что низкочастотные колебания являются следствием процеСсионного движения вынужденного вихря вокруг геометрической оси камеры закручивания. [c.32]

    Круговой дихроизм близок по природе к электронным спектрам поглощения. В отличие от ДОВ кривая КД имеет относительно более простую, гауссову форму максимума (положительного или отрицательного). Это облегчает определение длины волны поглощения и при перекрывании нескольких максимумов облегчает разделение сложной кривой на отдельные составляющие. Поэтому для спектроскопических целей предпочитают использовать метод КД, особенно для комплексных соединений. Полосы [c.202]

    Излучение, испускаемое твердыми телами или жидкостями, всегда дает сплошной спектр. Излучение, испускаемое раскаленными газами и парами, в отличие от излучения твердых тел и жидкостей, содержит только определенные длины волн. Поэтому вместо сплошной полосы на экране получается ряд отдельных цветных линий, разделенных темными промежутками. Число и расположение этих линий зависят от природы раскаленного газа или пара. Так, пары калия дают- спектр, состоящий из трех линий, — двух красных и одной фиолетовой в спектре паров кальция несколько красных, желтых и зеленых линий и т, д. [c.40]

    В ряде работ разделение частиц типа I и типа II проводится по потенциалам окисления по первой более катодной волне на потенциодинамической кривой окисления хемосорбированного вещества (например, рис. 3.5) рассчитывалось количество электричества, затраченное на окисление частиц типа I, а вторая волна, наблюдаемая в области потенциалов адсорбции кислорода, относилась к окислению частиц типа II. Недостаточная корректность [c.103]

    Многие адсорбенты содержат неорганические примеси, в частности железо, а также экстрагируемые растворителями органические примеси, которые мешают идентификации разделенных веществ, элюированных с пластинок. Установлено, что силикагели Н, HF254 или HR (Merely удовлетворяют основным требованиям, предъявляемым к адсорбентам общего назначения, применяемым как в хроматографии в тонком слое, так и в высокоэффективной хроматографии в колонках. Эти адсорбенты не содержат связующего, свободны от органических материалов, которые могут быть экстрагированы растворителями, и дают однородное покрытие пластинок, которое может быть успешно использовано при работе с большинством органических растворителей. Силикагель HF254 содержит неорганический флуоресцентный индикатор, позволяющий при просматривании пластинок, облучаемых светом длиной волны 254 нм, детектировать поглощающие флуоресценцию при этой длине волны разделенные вещества в виде неярких розовато-лиловых пятен на зеленом фоне. Силикагель HR является адсорбентом высокой чистоты, и его в высшей степени целесообразно использовать в тех случаях, когда разделенные вешества должны быть вымыты с адсорбента и собраны для дальнейшей идентификации. [c.136]

    Окисление ДМФЗ в ацетонитриле протекает через две обратимые последовательные одноэлектронные окислительно-восстановительные стадии, причем первая с Ер/2 при 0,11 В, а вторая с Ер/2 при 0,83 В относительно нас. к. э. Электрохимическая обратимость обеих стадий была проверена с использованием большинства известных диагностических критериев [86]. Циклические вольтамперограммы ДМФЗ характеризуются шириной пика Ер—Ер/2), равной 59 1 мВ для всех четырех волн, разделением пиков ра—Ерс), равным 61 2 мВ для обеих пар, независимостью ip v Ч от V для каждой из четырех волн и отно- [c.72]

    На рис. 21, а изображены два когерентных излучателя вторичнь1Х волн, разделенных расстоянием а. Видно, что волны, испущенные под углом р к падающему лучу, усиливают друг друга, если одна отстает от другой ровно на длину волны Я, т. е. когда [c.33]

    Так как стандартные определения содержания, масла при составлении, спецификации отнимают много времени и плохо воспроизводимы (в пределах от 0,1 до 1,0% вес.), был предложен метод ультрафиолетовых спектров поглощения. Удельное поглощение на длине волны 230 m/t является надежной характеристикой содержання масла в парафинах из любого сырья или из парафинов, полученных в результате переработки (например, полученных при депарафинизации растворителя), из которых масло было выделено физическими методами без селективного разделения по типам колец углеводородов. Удельное поглощение парафинов на 230 m/t прямо пропорционально содержанию масла, как это установлено стандартным методом ASTM 721-47. Для данной фракции отклонения составляют около [c.289]

    Для того чтобы избежать гидравлического градиента уровня жидкости на плите, колебаний. уровня и возникновения волн на поверхности слоя жидкости, применяют различные приспособления. Конструктивно наиболее просты невысокие емкости достаточно большого размера, устанавливаемые на ножках над отверстиями нлиты, из которых жидкость по наруж1юй стенке переливается на плиту, а также коробки, перфорированные прорезями (рис. 28). Иногда применяют работающие по принципу глушителя скорости цилиндрические стаканы, присоединяемые непосредственно к напорной линии питающего насоса и имеющие множество отверстий, рассверленных обычно в обращенной к плите стенке, либо перфорированные трубчатые коллекторы. Для питания разделенных на секции небольших плит (см. рис. 24,(3) применяют керамические распределители типа паук [20], а для подачи жидкости на секторы [c.83]

    Схема 3. При работе схемы типа тор (рис. 7.6) реакционная смесь подается в зону контакта в одном направлении. В слое катализатора, разделенном на две одинаковые части А и 42, тепловая волна реакции периодически перемещается с помопЦ)Ю попеременного переключения задвижек 1—6. При этом прореагировавшую смесь выводят из слоя катализатора в направлении, показанном стрелками. Например, на часть слоя А катализатора, предварительно нагретого до высокой температуры, подают исходную реакционную смесь с низкой температурой. При этом задвижки 1, 3, 5 открыты, а задвижки 2, 4п6 закрыты. Возникшая тепловая волна начнет перемещаться из положения в положение а . Через интервал времени полуцикла реакционная зона с высокой температурой перемещается в слой В этот момент одновременно начинают закрывать задвижки 1 ж 3, задвижку 2 открывать и подавать исходную реакционную смесь с низкой температурой в часть слоя Л 2. После полного закрытия задвижек 5 и открытия задвижки 2 начинают одновременно срабатывать задвижки 4—6 (5-закрывается, 4,6 — открываются). При этом прореагировавшую реакционную смесь из части слоя А подают в часть и выводят из слоя (штриховые линии). При последовательном переключении задвижек 1—б осуществляется непрерывное движение тепловой волны по схеме и т. д. в одном направлении. Места [c.294]

    В работе Коффина и Фунта [25] исследовано влияние ультразвуковых волн частотой 25 кГц на фракционную перегонку смеси бензола л, четыреххлористым углеродом. Авторы полагали, что ультразвук будет способствовать более быстрому достижению равновесия в процессах парообразования и конденсации, что и приводит к ускорению разделения смеси. Опыты проводили в стеклянных трубках диаметром [c.157]

    Пуск реактора по данной схеме производится следующим образом. На предварительно разогретый слой катализатора исходная реакционная смесь с низкой входной температурой подается через заслонку 2 (заслонка 1 закрыта). В центральной части слоя (А1) и в крайней части (А2) возникают тепловые волны (О] и Ь соответственно), которые движутся в направлении фильтрации реакционной смеси. Направления газовых потоков в частях слоя указаны непрерывными стрелками (см. рис. 6.21, а). Через некоторое время (время полуцикла) тепловая волна щ займет положение 02, а волна 1 - положение 2 (см. рис. 6.21, б). В это время заслонка 1 открывается, а заслонка 2 закрывается. Это приводит к разделению теплового пика Д2 на две тепловые волны. Одна из них будет распространяться по центральной части слоя (/ 1), а вторая - по крайней части (слой А ). Направления распространения тепловых волн совпадают с направлениями фильтрации смеси в слоях и показаны стрелками (см. рис. 6.21, б). Через время полуцикла тепловая волна 02 займет вновь положение О) (см. рис. 6.21, а). После этого цикл повторяется. При такой организации процесса центральная часть слоя работает в режиме переменных направлений фильтрации реакционной смеси, а тепло, вьщеляющееся в этой части, служит для попеременного нафева слоев А2 и Ау Крайние части слоя работают периодически в режиме нафева или формирования и вытеснения тепловой волны. Через несколько переключений во всех частях слоя устанавливаются периодически повторяющиеся температурные и конценфационные поля. [c.321]

    Современные методы спектрального анализа трудно применять к исследованию многокомпонентных систем, нефтей, нефтяных фракций, многокомпонентных полимеров. Исследования, проведенные в последние годы, позволяют выделить элекфонную феноменологическую спектроскопию (ЭФС) как перспективное направление в изучении совокупности свойств многокомпонентных органических веществ и оперативном контроле процессов химических и нефтехимических производств В отличие от обычного варианта электронной спектроскопии, в ЭФС вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных фупп или компонентов. ЭФС основана на установленны х нами закономерностях связи оптических характеристик поглощения (коэффициентов поглощения, коэффициентов отражения, цветовых характеристик и тд.) с физикохимическими свойствами системы. Разработанные на этих принципах исследовательские методы использованы в лабораторной и производственной практике. [c.224]

    Схема 3 тор приведена на рис. 6.3 [3]. По этой схеме реакционная смесь подается в зону контакта в одном направлении. В слое катализатора, разделенном на две одинаковые части Л1 и Аг, тепловая волна реакции периодически перемещается из положения 01 в Яг и далее из аг в а,. Волна перемещается с помощью попеременного переключения задвижек 1—6. При этом прореагировавшую смесь выводят из слоя катализатора в направлении, показанном стрелками. Например, на часть катализатора Л,, предварительно нагретого до высокой температуры, подают исходн ю реакционную смесь с низкой температурой. При этом задвижки 1, 3, 5 открыты, а задвижки 2, 4 и 6 закрыты. Возникшая тепловая волна начнет перемещаться из положения а, в положение аг. Через интервал времени полуцикла реакционная зона с высокой температурой перемещается в слой Л,. В этот момент одновременно начинают закрывать задвижки и 5, а задвижь у 2 открывать и пода- [c.148]

    Схема 4 спичка приведена на рис. 6.4 [4]. По этой схеме реакционный процесс ведут в слое катализатора, разделенном на две неравные части Л, и А,. Часть слоя Ау служит для периодического нагреша слоя А 2. Наиример, на предварительно нагретый до достаточно высокой темиературы слой катализатора Л, и Лг подается исходная реакционная смесь с низкой входной температурой. Направления фильтрации реакционной смеси показаны стрелками (см. рис. 6.4, а). При этом в каждой части слоя Л, и Ла возникают две тепловые волны ау и Ь,, которые перемещаются в направлениях фильтрации смеси. Задвижка 1 закрыта, задвижка 3 открыта, а задвижка 2 открыта не полностью, регулируя скорость фильтрации, и, следовательно, скорость движения тепловой волны в слое Л,. Через некоторое время волны займут положение Оа и 6а (см. рис. 6.4, б), после чего задвижка 1 открывается, и исходная реакционная смесь последовательно проходит через слои Л, и Ла в направлении, указанном штриховыми стрелками. Через некоторое время тепловая волна Ьа займет положение, показанное на рис. 6.4, а. В этот момент начинается подача реакционной смеси межщг слоями Л, и Л а, что обеспечивается переключением задвижек 1—3. При этом за- [c.149]

    Интервал определяемых концентраций 10 —10 М, нижний предел определений в методе с, линейной разверткой напряжения и в переменнотоковой полярографии достигает 10 и в инверсионной вольтамперометрии—10 М, при определении малых концентраций погрешность не превышает 3%. Метод достаточно селективен разрешающая способность по потенциалам (полярографические волны не сливаются) в классической полярографии 100—150 мВ, в переменнотоковой и в полярографии с линейной разверткой напряжения — 30—50 мВ. Разрешающая способность может быть увеличена, если регистрировать кривую AIlAE = f E). При этом на полярограмме при E = Ei/ наблюдается максимум, высота которого пропорциональна концентрации. Дополнительного разделения полярографических волн можно достичь, используя в качестве фонового электролита комплексо-образующий реагент. Например, раздельное определение ионов Со2+ и N 2+ в смеси на фоне 1 М раствора КС1 затруднительно Ei/ =—1,2 и —1,1 В соответственно), тогда как на фоне 1 М раствора KS N эти значения изменяются до —1,3 и —0,7 В. Метод быстр в исполнении единичные измерения занимают несколько минут и могут быть повторены для одного и того же раствора многократно (практически истощение деполяризатора в растворе не происходит). Ограничения метода полярографического анализа связаны с использованием ртутного электрода. [c.144]

    Осаждение применяется главным образом для разделения суспензий и пылей. Оно происходит под действием сил тяжести, сил инерции (в том числе центробежных), электростатических сил или звуковых волн. [c.240]

    Воспламенение газа при кратковременном сильном нагревании иногда изучают в приборе, получившем название ударной трубы. Она состоит из двух камер — высокого я 1НИЗК0Г0 давления, разделенных герметичной, но тонкой перегородкой, играющей роль разрывной мембраны. Камера низкого давления, объем которой много больше, чем у камеры высокого давления, заполняется исследуемым газом. В камеру высокого давления медленно впускается инертный газ при определенном давлении мембрана разрывается, инертный газ втекает в камеру низкого давления. При этом возникает падающая ударная волна, нагревающая исследуемую среду повторное нагревание происходит в отраженной от закрытого конца трубы ударной волне. Температура и вре- [c.34]

    ИЛИ водородом. Излучение лампы фокусируется зеркалами А[ и Лг на входную щель 4 монохроматора. При помощи зеркала на диспергирующее устройство / (призму из высококачественного кварца или дифракционную решетку) направляется параллельный пучок излучения. На диспергирующем устройстве излучение разлагается в спектр, изображение которого тем же зеркалом Лз фокусируется на выходной щели 5 монохроматора. Выходная щель из полученного спектра источника вырезает узкую полосу спектра. Чем уже щель, тем более монохрома тичная полоса спектра выходит пз монохроматора. Излучение называется монохроматическим, если в нем все волны имеют одинаковую частоту. Средняя длина волны, характеризующая данную полосу спектра, определяется углом поворота диспергирующего устройства вокруг оси. Затем зеркалом Л4 монохромахизированный пучок света разделяется на два одинаковых по интенсив 0ст и луча луч, проходящий через кювету сравнения я через кювету с образцом. Вращающейся диафрагмой 6 перекрывают попеременно то луч сравнения, то луч образца, чем достигается разделение данных лучей во времени. Зеркалами Л5 лучи сравнения и образца фокусируются на кювете сравнения и образца соответственно. Требования к фокусировке пучка лучей на кюветах в современных приборах очень высокие ширина пучка должна быть порядка 1—2 мм на расстоянии 10— 40 мм. Только с такими узкими пучками света, проходящими через кюветы, возможно использование микрокювет. После прохождения кювет световой поток зеркалами Ав направляется на детектор 7, которым обычно служит фотоэлемент или фотоумножитель. [c.12]

    Во-вторых, нанесение полимерного защитного покрытия резко меняет природу материала подложки место кристаллического атомного соединения - металла - занимает аморфное атомное соединение - полимер, т.е. происходит замена типа электронной структуры материала подложки. Замена кристаллического атомного соединения, у которого каждый электрон взаимодействует сразу со всей системой в целом, на аморфное атомное соединение, электронная структура которого представляет собой набор дискретных уровней, разделенных высокими потенциальными барьерами, препятствующими распределению электронных волн за границу каждой данной межатомной связи, меняет механизм взаимодействия подложки с такими типичными молекулярными твердыми соединениями, какими являются кристаллические парафиновые частицы. В результате такой замены более интенсивная адгезионная связь, основанная на образовании двойного электрического слоя, возникающего в результате контактной электризации поверхностей металла и парафиновой частицы, с энергией более 65 кДж/моль /56/, сменяется адгезионной связью, определяемой ван-дер-ваальсовыми силами, энергия которых не превышает 50 кДж/моль. Поэтому смена металлической поверхности на полимерную уже сама по себе должна привести к ослаблению адгезионной связи. Действительно, как бьшо показано экспериментально /30/, сила прилипания парафина к поверхности такого наиболее интенсивно парафинирующегося полимера, как полиэтилен, в 2,3 раза ниже, чем у стали. [c.143]

    Для идентификации многокомпонентных органических систем обычно используется сочетание нескольких методов, например, фракционирование методов ЯМР-, УФ-, ИК -спектроскопии и хроматографии, масспектрометрии [11,12] Существенным недостатком известных методик является трудоемкость, длительность и неоднозначность результатов анализа. До последнего времени применению методов электронной абсорбционной спектроскопии препятствовало отсутствие теории электронных спектров таких систем, главным образом из- за их сложности ( рис 4 1). Для исследования таких объектов требуются новые методы. Предлагаемый в данной работе подход относится к ( ю-номенологическим методам, т к. система, поглощающая излучение, рассматривается как единое целое, а максимумы спектров и электронные переходы во внимание не принимаются. Такое необычное направление в электронной спектроскопии определено нами, как электронная феноменологическая спектроскопия (ЭФС). Вещество изучаегся как единое це юе, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных групп или компонентов системы. Известно, что электронное строение веществ определяет его физико-химические свойства [13]. В свою очередь, электронные спектры также определяются конфигурацией электронных оболочек [14]. [c.64]

    После процедуры хроматографического разделения фуллеренов С60 и С70 авторами [22] были получены УФ/видимые-спектры гексановых растворов С60 и С70 отдельно. Однако в области 400-700 нм для обеих молекул в бензоловом растворе показаны только очень слабые характерные черты. В [23] успешно апробирован спектрально-оптический метод фракционного определения концентраций С60 и С70 в угольном конденсате - фуллеренсодержащем полупродукте - без предварительной хроматографической очистки. Количественный анализ гексановых экстрактов смесей С60 и С70 проводился по электронным УФ/видимым-спектрам поглощения методом трех аналитических длин волн. В [24] предложена методика исследования кинетики экстракции фуллеренов с использованием оптической спектроскопии в УФ-области. Это под1верждает высокую чувствительность данного диапазона частот в области низких концен- [c.14]

    Электронная структура аморфных веществ, как и отдельных молекул, представляет собой набор дискретных уровней, разделенных высокими потенциальными барьерами. Близкие энергетические состояния валентных электронов разобщены, так как геометрия волноводов — неодинаковые длины и углы межатомных связей, обусловленные непериодичноотью структуры — препятствует распространению электронных волн за границы каждой данной межатомной связи. Но поскольку аморфные вещества, как и кристаллы, обладают множеством близких энергетических состояний валентных электронов, электронные энергетические спектры твердых тел непериодического строения похожи в некоторых отношениях на энергетические спектры кристаллов. < [c.99]

    Положение несколько изменяется, если в аналогичных условиях вести растяжение или экструзию смеси полимеров. Поскольку теперь цепи разной природы не связаны друг с другом в единую макромолекулу, тенденция к разделению макроскопических фаз сказывается сильнее, и вклад градиента скорости начинает играть большую роль. При сравнительно небольших в бинарном расплаве можно получить замороженную струю одного из компонентов, в которой как бы зафиксированы внутренние напряжения, порождающие капиллярные волны соответственно фиксируется и волнистая форма замороженной струи. Если убрать второй компонент (с помощью подходящего растворителя), -компеисация этих накопленных внутренних напряжений за счет параметра хав устраняется и происходит еще одна ориентационная катастрофа капельный распад затвердевшей струи. [c.224]

    Большинство аналитических методов, применяемых в компонентной аналитической химии, дают информацию и о качественном, и о количественном составе пробы. Если обозначить через 2 величину, характеризующую природу составных частей, а через у величину, характеризующую их количество, то в качестве примера можно привести постояннотоковую полярограм-му (рис. Д.174) и спектр, полученный в пламени (рис. Д.175). Таким образом, речь в данном случае идет о получении двухмерной аналитической информации. Превращение ее в одномерную в случае фотометрии пламени дало бы точки на оси z для качественного параметра (в данном случае для длин волн) и колоколообразную кривую распределения интенсивности эмиссии (количественный параметр) для определенного значения 2 (рис. Д.176,а и б). Такую одномерную аналитическую информацию используют в качественном анализе, например, при проведении классического разделения или при применении селективных цветных реакций, когда нужно получить сведения только об отсутствии или присутствии какого-либо элемента а также в количественном анализе, когда нужно только установить, какое количество определенного элемента вступило в реакцию. Не будем останавливаться на рассмотрении вопросов получения и обработки информации о структуре вещества, поскольку это не входит в задачи данной книги. [c.430]


Смотреть страницы где упоминается термин Волна разделение: [c.140]    [c.201]    [c.188]    [c.273]   
Основы полярографии (1965) -- [ c.164 , c.166 , c.168 , c.172 ]




ПОИСК







© 2025 chem21.info Реклама на сайте