Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деполяризаторы анодные

    Если выделяющийся металл взаимодействует с материалом катода, происходит деполяризация катодного процесса — сдвиг потенциала катода в электроположительную сторону. Особенно сильна деполяризация при выделении одного жидкого металла на другом с образованием сплава. Свободная энергия реакции разряда ионов уменьшается на величину энергии взаимодействия металлов, что приводит к значительной деполяризации. Деполяризатором анодного процесса обычно служит металл, растворенный в электролите и взаимодействующий с анодными продуктами. [c.266]


    При этой концентрации деполяризатора анодные и катодные кривые пересекаются при потенциале +0,2 б и отпущенная сталь корродирует с небольшой скоростью. Требуется значительное время, пока в растворе накопятся продукты коррозии, которые сместят потенциал в отрицательную сторону до +0,1 в, при котором уже наблюдается усиленная межкристаллитная коррозия. [c.251]

    Серная кислота, образующаяся на аноде в результате электролиза, подвергается термическому разложению с образованием диоксида серы, возвращаемого в процесс в качестве деполяризатора анодного процесса выделения кислорода  [c.228]

    Как видно из данных табл. VII.11, ЗОг в качестве деполяризатора анодного процесса существенно снижает напряжение па электролизере и расход электроэнергии на электролиз. Отметим при этом, что в условиях деполяризации износ графитового анода незначителен. [c.230]

    Электролиз при контролируемом потенциале применяли для выделения примерно 10 % РЬ и С(1 из сплавов на основе цинка [152]. Свинец, С(1, а также Си выделялись на ртутном катоде при контролируемом потенциале —0,9 в относительно насыщенного каломельного электрода (н. к. э.) из солянокислого раствора, содержащего гидразин в качестве анодного деполяризатора. Анодное растворение РЬ и С(3 из амальгамы проводили затем при —0,35 в относительно н. к. э. в 0,1 н. растворе КС1, содержащем гидразин, и оба элемента определяли полярографически. Медь оставалась в амальгаме. [c.105]

    Возможность подразделения процесса растворения металлов в электролитах на два сопряженных процесса — анодный и катодный — облегчает в большинстве случаев его протекание по сравнению с химическим взаимодействием. При электрохимическом взаимодействии окислитель играет лишь роль деполяризатора, отнимающего валентные электроны металла и обеспечивающего переход металла в ионное состояние, но не вступает с ним при этом в химическое соединение [вторичные процессы и продукты коррозии при электрохимическом механизме коррозии металлов могут иметь место (см. с. 212), но они не обязательны]. [c.181]

    Температура оказывает в большинстве случаев значительное влияние на скорость электрохимической коррозии металлов, так как изменяет скорость диффузии, перенапряжение электродных процессов, степень анодной пассивности, растворимость деполяризатора (например, кислорода) и вторичных продуктов коррозии. [c.353]

    Такие окислители, как хроматы н бихроматы, являются плохими катодными деполяризаторами и в то же время сильно пассивируют практически важные металлы (Fe, Al, Zn, u). Достаточно добавить в водопроводную воду 0,1% двухромовокислого калия, чтобы резко снизить скорость коррозии углеродистой стали н алюминия. При содержании в воде сильных активаторов коррозии (например, хлористых солей) концеитрацию бихромата следует увеличить до 2—3%. Хроматы и бихроматы относятся к типу смешанных замедлителей коррозии, но тормозят преимущественной анодный процесс. [c.312]


    В азотной кислоте катодным деполяризатором (пассиватором) является азотистая кислота НМОа [51. Она может образовываться в достаточном количестве в результате начальной быстрой реакции железа с НЫОз. С накоплением НЫОа возрастает анодная плотность тока, достигая, наконец /крит- Железо становится пассивным, и скорость коррозии его уменьшается до сравнительно низкого значения — около 2 г/(м -сут) [13]. [c.77]

    При потенциале ниже критического ионы С1 не могут заместить адсорбированный кислород до тех пор, пока пассивная пленка остается неповрежденной, поэтому питтинг не развивается. Если бы пассивность была нарушена другим путем, например снижением концентрации кислорода или деполяризатора в щелях (щелевая коррозия) или локальной катодной поляризацией,- пит-тинг мог бы тогда возникнуть независимо от того, выше или ниже критического значения находится потенциал основной поверхности. Но в условиях однородной пассивности на всей поверхности металла, чтобы организовать катодную защиту для предотвращения питтингообразования, требуется лишь сдвинуть потенциал металла ниже критического значения. Это противоречит обычному правилу применения катодной защиты, согласно которому необходима более глубокая поляризация металла — до значения анодного потенциала при разомкнутой цепи. [c.88]

    Агрессивность грунта определяется 1) его пористостью (аэрацией), 2) электропроводимостью или сопротивлением, 3) наличием растворенных солей, включая деполяризаторы или ингибиторы, 4) влажностью, 5) кислотностью или щелочностью. Каждый из этих параметров может влиять на характеристики анодной и катодной поляризации металла в грунте [6]. [c.182]

    Кислородно-метанольный элемент. Среди элементов, в которых анодный деполяризатор подается к электроду в виде раствора, подробно изучен элемент, содержащий метанол, растворенный в щелочном электролите. На аноде из тонкодисперсного никеля в нем протекает окисление метанола с образованием углекислых и муравьинокислых солей  [c.60]

    В присутствии ионов железа невозможно надежно определить содержание Си + методом электрогравиметрии. Это также можно объяснить деполяризующим действием. Окисление железа до Ре + на аноде и восстановление до Ре + на катоде происходит легче, чем восстановление Си + до Си. При проведении электролиза в солянокислом растворе с применением платиновых электродов следует опасаться повреждения платины из-за анодного образования СЬ. Добавляя деполяризатор — гидразин, подавляют выделение СЬ- [c.263]

    Если к началу титрования раствор не содержит одновременно анодного и катодного деполяризаторов, как в рассмотренном примере (раствор Ь в К1), то титрование происходит иначе. Например, титруют ионы [Ре(СМ)б] раствором, соли Се +. До начала титрования в растворе -находится только анод- ый деполяризатор [Ре(СЫ)б] . Катод поляризован, а анод деполяризован, и ток практически не протекает. Только в процессе титрования образуется катодный деполяризатор 1Р( (СЫ)б] и сила тока возрастает. Можно показать, что сила тока в этом случае может достичь максимума при прохождении реакции на 50%. При полном окислении [1ре(СЫ)б] до ([Ре(СМ)б] (в точке эквивалентности) в растворе больше нет анодного деполяризатора, анод поляризован и сила тока снова становится равной нулю. [c.300]

    Из приведенного уравнения (4) следует, что теоретически I стремится к нулю при бесконечной продолжительности электролиза. В действительности даже при бесконечном продолжении электролиза сила тока по достижении некоторого малого значения перестает далее уменьшаться и остается постоянной. Этот ток, названный остаточным током, вызван электролизом разных примесей — деполяризаторов, например кислорода, или медленным разрядом водорода и другими причинами. Поэтому электролиз следует считать оконченным в момент, когда сила тока перестает изменяться в течение некоторого времени. Однако и в этом случае продолжительность электролиза остается довольно большой, что несколько снижает ценность метода. Если руководствоваться заданной точностью результатов анализа, то нет необходимости продолжать процесс до прекращения изменения силы тока в цепи. Остановив электролиз при величине сила тока, равной 0,01 г о или 0,001 о, можно завершить электрохимическое превращение вещества с точностью 1 или 0,1% соответственно. Однако надо учесть, что для обеспечения максимальной скорости электролиза потенциал рабочего электрода следует поддерживать в пределах площадки предельного тока (см., например, рис. 62), т. е. потенциал Е при анодной и 2—при катодной реакциях, так как в этих условиях наблюдается не только 100%-ный выход по току, но и максимально возможная сила тока, обусловленная переносом вещества. [c.194]

    Представленные на рис.2 возрастания, а затем уменьшения скорости коррозии меди с увеличениехУ концентрации деполяризатора свидетельствуют о некотором различии процесса травления меди. В растворах, где имеет место увеличение скорости коррозии с возрастанием концентрации ионов Си(П), т.е. содержится избыток ионов хлора по сравнению с деполяризатором, анодный процесс облегчен и идет только за счет образования комплекса. Когда на каждый ион Си ( Г) в единицу времени подводится меньше трех ионов хлора, комплексообразование затрудняется и на поверхности металла возможно образование тонкой пленки u l. Это несколько снижает скорость травления, но не приводит к полной пассивации меди, так как скорость образования u l и переход ее в растворимый комплекс еще достаточно велики для данной концентрации хлора. [c.91]


    При замыкании в электролите двух обратимых электродов с разными потенциалами [(Уа)обр и (Ук)обр1 происходит перетекание электронов от более отрицательного электрода (анода) к менее отрицательному (или более положительному) электроду (катоду). Это перетекание электронов выравнивает значения потенциалов замкнутых электродов. Если бы при этом электродные процессы (анодный на аноде и катодный на катоде) не протекали, потенциалы электродов сравнялись бы и наступила бы полная поляризация. В действительности анодный и катодный электродные процессы продолжаются, препятствуя наступлению полной поляризации вследствие перетекания электронов с анода к катоду, т. е. действуют деполяризующие. Отсюда, в частности, происходит и название ионов и молекул раствора, обеспечивающих протекание катодного процесса — деполяризаторы. Однако из-за отставания электродных процессов от перетока электронов в гальваническом элементе (см. с. 192) потенциалы электродов изменяются (сближаются) и короткозамкнутая система, в конечном итоге, полностью заполяризовывается (см. с. 271, 282 и 287). [c.191]

    Процессы, уменьшающие анодную поляризацию, называются деполяризационными процессами (например, перемешивание, снижающее концентрационную поляризацию), а вещества, их осуществляющие, — анодными деполяризаторами (например, ком-плексообразователи NHg. N и др., сильно понижающие активность простых ионов металлов в растворе вследствие их связывания втруднодиссоциирующие комплексы, или ионыСГ, затрудняющие наступление анодной пассивности металлов). [c.197]

    Электродные процессы электрохимической коррозии металлов обязательно включают в себя, как всякий гетерогенный процесс, помимо электрохимической реакции, стадии массопереноса, осуществляемые диффузией или конвекцией отвод продукта анодного процесса (ионов металла) от места реакции — поверхности металла, перенос частиц деполяризатора катодного процесса к поверхности металла и отвод продуктов катодной деполяризацион-ной реакции от места реакции — поверхности металла в глубь раствора и т. п. Суммарная скорость гетерогенного процесса определяется торможениями его отдельных стадий. Если, однако, торможение одной из последовательных его стадий значительно больше других, то сумм.арная скорость процесса определяется в основном скоростью этой наиболее заторможенной стадии. В коррозионных процессах довольно часты случаи диффузионного или диффузионно-кинетического контроля, т. е. значительной заторможенности стадий массопереноса. В связи с этим диффузионная кинетика представляет теоретический и практический интерес. [c.204]

    Зависимость скорости коррозии железа и углеродистых сталей от концентрации хлоридов и сульфатов нейтральных растворов имеет вид кривых с максимумом (см. рис. 242), зависящим от природы растворенной соли. С ростом концентрации солей увеличивается концентрация ионов хлора, сульфата и аммония, активирующих и облегчающих анодный прйцесс, и уменьшается растворимость деполяризатора кислорода (см. рис. 162), что затрудняет протекание катодного процесса. В каком-то интервале концентраций сильнее сказывается первый эффект, а затем преобладает второй. [c.345]

    При недостаточной концентрации анодных ингибиторов для наступления полной пассивности металла (особенно в присутствии активных депассивирующих ионов, например, ионов СГ) они являются о гасными, так как могут ускорить общую или местную коррозию, действуя как катодные деполяризаторы (рис. 245 и 246). [c.347]

    Пропускание через расплавленный Na l воздуха, кислорода, углекислоты и водяного пара, а также введение добавок сульфатов, карбонатов, нитритов натрия, хлористого кальция и других деполяризаторов облегчает протекание катодного процесса на железном электроде, в то время как торможение анодного процесса на железном электроде оказывает только добавка карбоната натрия. Добавка в расплав 95% Na l + 5% Naj Oa карбида кремния в количестве 5% полностью нейтрализует действие соды [c.412]

    Затрудненность доставки в щель окислителя— катодного деполяризатора (которая в достаточно узких щелях может быть чисто диффузионной), затрудняет протекание катодного процесса, увеличивая его поляризуемость. Уменьшение pH среды за счет гидролиза продуктов коррозии облегчает протекание анодного процесса, уменьшая его поляризуемость (облегчая ионизацию металла и затрудняя образование защитных пленок), что приводит к усиленной работе макропары металл в щели (анод) —металл открытой поверхности (катод). [c.415]

    Поляризационная диаграмма для типичных случаев контроля электрохимической коррозии приведена на рис. 1.3, на ней катодный лроцесс представлен кривой oJPQMN. При анодном цроцессе, характеризуемом кривой Es,lQ, коррозионный процесс идет с преимущественным катодным контролем Д к1>А а1 с кинетическим торможением катодного процесса. В этом случае основным контролирующим факторов является перенапряжение ионизации кислорода (или другого окислительного деполяризатора). [c.7]

    При анодном процессе Еа2М сохраняется катодный контроль АЕк2 >АЕд,2, однако контролирующим фактором становится диффузия кислорода. Скорость коррозии почти целиком зависит от скорости. подвода окислительного деполяризатора, т. е. от величины предельного диффузионного тока по кислороду. [c.7]

    Теория пассивности уже частично рассматривалась выше, и следует вновь обратиться к этому материалу (см. разд. 5.2). Контактирующий с металлической поверхностью пассиватор действует как деполяризатор, вызывая возникновение на имеющихся анодных участках поверхности высоких плотностей тока, превышающих значение критической плотности тока пассивации /крит-Пассиваторами могут служить только такие ионы, которые являются окислителями с термодинамической точки зрения (положительный окислительно-восстановительный потенциал) и одновременно легко восстанавливаются (катодный ток быстро возрастает с уменьшением потенциала — см. рис. 16.1). Поэтому трудновос-станавливаемые ионы или С101 не являются пассиваторами [c.261]

    Для достижения наилучшего ингибирующего эффекта концентрация пассиватора должна превышать определенное критическое значение. Ниже этого значения пассиваторы ведут себя как активные деполяризаторы и увеличивают скорость коррозии на локализованных участках поверхности (питтинг). Более низкая концентрация пассиватора соответствует бЬлее отрицательным значениям окислительно-восстановительного потенциала, и вследствие этого катодная поляризационная кривая пересекает анодную кривую в активной, а не в пассивной области (см. рис. 16.1). [c.262]

    Электрохимическая коррозия — это разрушение металла при взаимодействии с коррозионной средой (электролитом), соправож-дающееся возникновением в металле электрического тока. Скорость электрохимической коррозии контролируется работой микро-гальванических пар на поверхности металла и зависит от разности потенциалов ее катодных и анодных участков. При электрохимических процессах продукты реакции отводятся с поверхности металла вглубь смазочного материала ионизация атомов металла (анодный процесс) и ассимиляция образующихся в металле избыточных электронов деполяризатором (катодный процесс) протекают в результате пространственного разделения участков реакции не единовременно. Применительно к электрохимической коррозии.говорят о защитных свойствам масла, т. е. о способности его тонкого слоя защищать металл от коррозионного воздействия внешних факторов (прежде всего электролитов). [c.36]

    Процессы, снижающие анодную поляризацию, называются деполя-ризаиионнъши. Например, перемешивание электролита снижает концентрационную поляризацию использование комплексообразова-телей (NHз N и др.) уменьшает активность простых ионов металлов вследствие их связывания в труднодиссоциирующие комплексы. Вещества, снижающие анодную поляризацию, называются анодными деполяризаторами. [c.39]

    Кислородно-гидразинный элемент. Гидразин при обычных условиях представляет собой жидкость. В присутствии катализаторов он легко разлагается на водород и азот. Г1оведение гидразина в качестве анодного деполяризатора изучено в элементе с кислородным катодом и щелочным электролитом. [c.59]

    Многие комнлексоны, в том числе и ЭДТА, являются деполяризаторами при анодной поляризации твердых микроэлектродов (графит, Pt и др.). При потенциале электрода 1 —1,2 В достигается предельный ток, пропорциональный концентрации комплексона. [c.178]

    Иногда протекание нежелательных побочлых реакций можно уменьшить применением так называемых деполяризаторов. Окислители относятся к катодным деполяризаторам, а восстановители— к анодным. Примером катодных деполяризаторов являются ионы КОз , которые могут подавлять реакцию выделения Нг на катоде. Выделение кислорода на аноде можно уменьшить, например применяя гидразин в качестве деполяризатора. Значение окислительно-восстановительного потенциала деполяризатора должно достигаться раньше, чем окислительно-восстановительного потенциала иона, разряжение которого хотят предотвратить, но позже чем выделяемого иона (почему ). [c.262]

    Примеры. При электролизе разбавленного солянокислого раствора РЬС11 на катоде выделяется РЬ, на аноде СЬ. Окисление хлора (2С1-->СЬ-Ь2е ) происходит при более низком значении потенциала (4-1,36 В), чем реакция РЬ2+- РЬ +-Ь2е- ( + 1,46 В). Ион С1- действует как анодный деполяризатор. [c.262]

    К двум электродам из платиновой проволоки, опущенным в хорошо перемещиваемы й раствор, прилагают постоянное поляризационное напряжение 10—100 мВ. Пока оба электрода по-/тяризованы, может протекать лишь крайне незначительный остаточный ток. Только в присутствии анодного или катодного деполяризатора возможно увеличение силы тока (порядка нескольких микроампер). Кривую титрования строят в координатах ток — расход титранта, так же как в методе амперометрии с одним поляризуемым электродом. [c.299]

    Если в ячейке находится раствор чистого фонового электролита без деполяризатора, то в области значений потенциалов между анодным растворением ртути на ртутном капельном электроде и катодным разложением фонового электролита и электрические свойства ячейки определяются только теременнотоковым сопротивлением R конденсатора С (рис. Д.120 (НИЖНЯЯ диаграмма, кривая 1). Для этого чистого емкостного тока справедливы выражения [c.301]

    Применение фазоселективного выпрямителя в переменнотоковой полярографии дает возможность полностью устранить емкостный ток, поскольку он опережает фарадеев ток (остаточный ток, обусловленный электродной реакцией деполяризатора). Ход перемениотоковой полярограммы становится понятным пр сопоставлении переменнотоковой полярограммы с постояннотоковой (рис. Д. 120). На постояннотоковой полярограмме (верхняя диаграмма) чистому фоновому электролиту соответствует кривая 1 (штриховая линия). Подъем на этой криво/г при. положительном потенциале ртутного капельного электрода обусловлен анодным растворением ртути, а при большом отрицательном значении потенциала— выделением катионов фонового электролита. При добавлении к фоновому электролиту деполяризатора ход кривой 2 вначале будет таким же. Вблизи потенциала полуволны деполяризатора возникает волна, а затем на кривой снова наблюдается горизонтальный участок до значения потенциала разложения фонового электролита. Небольшое переменное напряжение, наложенное на линейно возрастающее постоянное напряжение переменнотоковой полярографии (в точках а, б, в), вызывает в области небольшого возрастания постояннотоковой полярограммы (а и в) незначительное изменение силы тока, но большое изменение потенциала полуволны в области б, обозначенное б. Поскольку, как указано выше, протекает только переменный ток, на переменнотоковой полярограмме (нижняя диаграмма) наблюдаются только эти изменения. Для обычных деполяризаторов возникают максимумы при значениях их потенциалов полуволн. Таким образом,, в идеальном случае переменнотоковая полярограмма совпадает с первой производной соответствующей постояннотоковой полярограммы (рис. Д.121), а также с дифференциальной полярограммой. Существенным отличием является очень небольшой максимум в случае необратимого электродного процесса,, поскольку малого значения переменного напряжения уже недостаточно для окисления и восстановления соответствующего количества деполяризатора на электродах. Поэтому применение переменнотоковой полярографии ограничено обратимостью электродных реакций. Однако этот метод имеет то преимуще- [c.302]

    При анодном процессе ионы металла переходят из кристаллической решетки в раствор, а в металле остаются свободные электроны, при катодном процессе происходит связывание окислителем освобождающихся электронов. В качестве примера можно назвать два наиболее распространенных катодных процесса разряд водородных ионов (2е-+2Н+ = Н2) и восстановление растворенного кислорода (4е + 0> + 4Н+ = 2Н20 или 4е + 02 + 2Н20 = 40Н ). Поскольку вещества, соединяющиеся с избыточными электронами, иногда называют деполяризаторами, то указанные процессы получили название соответственно водородной и кислородной деполяризации. [c.273]


Смотреть страницы где упоминается термин Деполяризаторы анодные: [c.148]    [c.399]    [c.37]    [c.144]    [c.31]    [c.35]    [c.303]    [c.269]    [c.144]    [c.21]   
Химический анализ (1966) -- [ c.348 ]

Физическая и коллоидная химия (1960) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Деполяризаторы

Ток анодный



© 2025 chem21.info Реклама на сайте