Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синаптическая щель

Рис. 8.2. Схема никотинового холинэргического синапса. Пресинаптическое нервное окончание содержит компоненты для синтеза нейромедиатора (здесь ацетилхолина). После синтеза (I) нейромедиатор упаковывается в пузырьки (везикулы) (II). Эти синаптические везикулы сливаются (возможно, вре.мен-но) с пресинаптической мембраной (1П), и нейромедиатор высвобождается таким путем в синаптическую щель. Он диффундирует к постсинаптической мембране и связывается там со специфическим рецептором (IV). В результате образования нейромедиатор-рецепторного комплекса постсинаптическая мембрана становится проницаемой для катионов (V), т. е. деполяризуется. (Если деполяризация достаточно высока, то появляется потенциал действия, т. е. химический сигнал снова превращается в электрический нервный импульс.) Наконец, медиатор инактивируется , т. е. либо расщепляется ферментом (VI), либо удаляется из синаптической щели посредством особого механизма поглощения . В приведенной схеме только один продукт расщепления медиатора— холин — поглощается нервным окончанием (VII) и используется вновь. Базальная мембрана — диффузная структура, идентифицируемая методом электронной микроскопии в синаптической щели (рис. 8.3,а), здесь не показана. Рис. 8.2. Схема <a href="/info/1561416">никотинового холинэргического синапса</a>. <a href="/info/567158">Пресинаптическое нервное окончание</a> содержит компоненты для <a href="/info/11666">синтеза</a> нейромедиатора (здесь ацетилхолина). После <a href="/info/11666">синтеза</a> (I) <a href="/info/101629">нейромедиатор</a> упаковывается в пузырьки (везикулы) (II). Эти <a href="/info/265924">синаптические везикулы</a> сливаются (возможно, вре.мен-но) с пресинаптической мембраной (1П), и <a href="/info/101629">нейромедиатор</a> высвобождается таким путем в синаптическую щель. Он диффундирует к постсинаптической мембране и связывается там со <a href="/info/32074">специфическим рецептором</a> (IV). В результате образования <a href="/info/101629">нейромедиатор</a>-<a href="/info/1356492">рецепторного комплекса</a> <a href="/info/102673">постсинаптическая мембрана</a> становится проницаемой для катионов (V), т. е. деполяризуется. (Если <a href="/info/17914">деполяризация</a> достаточно <a href="/info/499796">высока</a>, то появляется <a href="/info/109300">потенциал действия</a>, т. е. химический сигнал снова превращается в электрический <a href="/info/169060">нервный импульс</a>.) Наконец, <a href="/info/101004">медиатор</a> инактивируется , т. е. либо <a href="/info/1569005">расщепляется ферментом</a> (VI), либо удаляется из синаптической щели посредством особого механизма поглощения . В приведенной схеме только один продукт расщепления медиатора— <a href="/info/1413">холин</a> — поглощается <a href="/info/566996">нервным окончанием</a> (VII) и используется вновь. <a href="/info/509001">Базальная мембрана</a> — диффузная структура, идентифицируемая <a href="/info/117537">методом электронной микроскопии</a> в синаптической щели (рис. 8.3,а), здесь не показана.

    В общих чертах картину участия ацетилхолина в осуществлении передачи нервного импульса возбуждения можно представить следующим образом. В синаптических нервных окончаниях имеются пузырьки (везикулы) диаметром 30—80 нм, которые содержат нейромедиаторы. Эти пузырьки покрыты оболочкой, которая образована белком клатрином (мол. масса 180000). В холинергических синапсах каждый пузырек диаметром 80 нм содержит 40000 молекул ацетилхолина. При возбуждении высвобождение медиатора происходит квантами , т.е. путем полного опорожнения каждого отдельного пузырька. В нормальных условиях под влиянием сильного импульса выделяется примерно 100—200 квантов медиатора—количество, достаточное для инициирования потенциала действия в постсинаптическом нейроне. Происходит это, по-видимому, следующим образом. Деполяризация мембраны синаптических окончаний вызывает быстрый ток ионов Са в клетку. Временное увеличение внутриклеточной концентрации ионов Са стимулирует слияние мембраны синаптических пузырьков с плазматической мембраной и таким образом запускает процесс высвобождения их содержимого. Для выброса содержимого одного пузырька требуется примерно 4 иона Са . Выделенный в синаптическую щель ацетилхолин вступает во взаимодействие с белком-хеморецептором, входящим в состав постсинаптической мембраны. В результате изменяется проницаемость мембраны —резко увеличивается ее пропускная способность для ионов Ка. Взаимодействие между рецептором и медиатором запускает ряд реакций, заставляющих постсинаптическую нервную клетку или эффекторную клетку выполнять свою специфическую функцию. После выделения медиатора должна наступить фаза его быстрой инактивации, или удаления, чтобы подготовить синапс к восприятию нового импульса. [c.638]

    Объемы выделяемых нейромедиаторов (называемых также и нейротрансмиттерами) невелики. Ацетилхолин, например, выделяется дозами, каждая из которых содержит около 10 ООО молекул. Эти молекулы распределяются по синаптической щели так, что сигнал достигает рецептора. Воздействие ацетилхолина на рецептор вызывает соответствующий физиологический ответ, после чего трансмиттер подвергается разрушению. Ацетилхолин гидролизуется под действием фермента ацетилхолинэстераза (АХЭ). [c.406]

    Передача сигналов от клетки к клетке. может осуществляться либо путем прямого прохождения потенциалов действия (электрические синапсы), либо с помощью специальных молекул — нейромедиаторов (химические синапсы). В зависимости от своих специфических функций синапсы имеют очень разные структуры. В химических синапсах расстояние между клетками составляет - 20—40 нм синаптическая щель между клетками— это часть межклеточного пространства она содержит жидкость с низким электрическим сопротивлением, так что электрический сигнал рассеивается прежде, чем он достигнет следующей клетки. Электрическая передача, напротив, осуществляется только в специализированных структурах — щелевых контактах, где клетки находятся на расстоянии 2 нм и соединяются проводящими канала.ми. В действительности здесь имеется нечто сходное с постулированным ранее синцитием, или многоклеточным цитоплазматическим континуумом. По иронии истории нау- [c.188]


    Как известно, клетки нервной системы (нейроны) не имеют непосредственного контакта друг с другом. Они разделены синаптическими щелями, через которые сигнал (передаваемый в виде бегущей по нейронной мембране волны поляризации-деполяризации) пройти не может без определенного посредника, называемого нейромедиатором (или нейротрансмиттером). Передача нервного импульса от одного нейрона к другому происходит следующим образом (рис. 3, схема А). По достижении нервным сигналом конца возбужденной клетки (нейрон 1) в ее пресинаптической области синтезируется нейротрансмиттер (АХ), который затем выбрасывается в синаптическую щель и быстро диффундирует к своему рецептору (R), расположенному в постсинаптической мембране покоящейся клетки (нейроне 2). [c.31]

    Известно, что в метаболизме катехоламиновых медиаторов особая роль принадлежит ферменту моноаминоксидазе (МАО). Этот фермент удаляет аминогруппу (—КН,) у норадреналина, серотонина, дофамина и адреналина, тем самым инактивируя указанные медиаторы. В последние годы было показано, что, помимо ферментативного превращения, существует и другой механизм быстрой инактивации, точнее удаления, медиаторов. Оказалось, что норадреналин быстро исчезает из синаптической щели в результате вторичного поглощения симпатическими нервами вновь оказавшись в нервном волокне, медиатор, естественно, не может воздействовать на постсинаптические клетки. Конкретный механизм этого явления пока не вполне ясен. [c.640]

    Рис 3 Передача нервного импульса ацетилхолином (АХ) через синаптическую щель Расширение ионофорного канма под действием АХ [c.31]

    Как же ацетилхолин попадает в синаптическую щель  [c.199]

    Каждый пузырек, выбрасывая свое содержимое в синаптическую щель, вызывает изменение мембранного потенциала постсинаптической клетки, и это можно регистрировать с помощью внутриклеточного электрода. Стимуляция [c.97]

    Медиатор диффундирует через синаптическую щель и воздействует на постсинаптическую метку, присоединяясь к рецепторным белкам постсинаптической мембраны. [c.101]

    Он образует цилиндрический канал, который с одной стороны выступает на 65 А в синаптическую щель, а с другой - пронизывает липидный бцслой мембраны, входя на 15 А внутрь клетки. Этот узкий канал (или пора) расширяется до 20 А при "посадке" на рецептор нейромедиатора (комплекс RAX) за счет резкого уменьшения вращательного (конформационного) движения субъединиц. Увеличение размера канала облегчает прохождение ионов К+ и Na+ через мембрану против электрохимического фадиента. При этом изменяется мембранный потенциал покоящегося нейрона 2, и в нем генерируется нервный импульс. После этого нейромедиатор гидролизуется ацетилхолинэстера-зой до неактивного холина, и ионофорныи канал закрывается. [c.31]

    Концы тонких нервных волокон утолщаются в синаптические пуговки, которые образуют контакты с дендритами других нейронов. Как правило, появление нервного сигнала на пресинаптическом конце нейрона стимулирует высвобождение химического нейромедиатора (или нейрогормона). Медиатор проходит через синаптическую щель между двумя клетками (ширина щели 10—50 нм обычно 20 нм) и вызывает деполяризацию постсинаптической мембраны следующего нейрона [c.325]

    Во время передачи электрического импульса из пресинаптического нейрона в синаптическую щель выделяется медиатор, который диффундирует в щели к мембране следующего, постсинаптического нейрона и здесь связывается со своим рецептором. Затем медиатор оказывает действие на активность различных ферментов. Одновременно в постсинаптической мембране активируются специальные белки, образующие в мембране каналы, по которым натрий входит в постсннаптический нейрон, а калий выходит наружу. Система возвращается в исходное, невозбужденное, состояние в течение миллисекунды. [c.113]

    Многие антвдепрессанты (вещества, снимающие депрессию) увеличивают содержание катехоламинов в синаптической щели, т.е. количество медиаторов для стимулирования рецептора возрастает. К таким веществам, в частности, относятся имипрамин (блокирует поглощение норадреналина нервными волокнами), амфетамин (одновременно способствует выделению норадреналина и блокирует его поглощение), ингибиторы МАО (подавляют метаболизм катехоламинов) и др. В связи с этим возникла катехол-аминовая гипотеза депрессивных состояний, согласно которой психическая депрессия связана с недостатком катехоламинов в мозге. [c.641]

    Расстояние между пресинаптической и посГсинаптической мембранами—синаптическая щель — может достигать 15—20 нм. В мионевральном соединении разрыв еще больше— до 50—100 нм. В то же время существуют синапсы с сильно сближенными и даже сливающимися пресинаптической и постсинаптической мембранами. Соответственно реализуются два типа передачи. При больших щелях передача является химической, при тесном контакте возможно прямое электрическое взаимодействие. Здесь мы рассмотрим химическую передачу. [c.382]

    На рис. 8.2 представлена схема химического синапса. Он состоит из нервного окончания на пресинаптической стороне и специализированной области на поверхности принимающей сигнал клетки на постсинаптической стороне. Пре- и постсинаптические мембраны находятся на расстоянии 20—40 нм. Синаптическая щель, видимо, заполнена олигосахаридсодержащей соединитель--ной тканью — базальной мембраной, представляющей собой поддерживающую структуру для обеих объединенных клеток. [c.189]

    В синапсе мембрана мышечной клетки ведет себя как преобразователь, который превращает химический сигнал, т.е. определенную концентрацию нейромедиатора, в сигнал электрический. Это осуществляется с помощью ли-ганд-зависимых ионных каналов, находящихся в постсинаптической мембране. Связывание нейромедиатора с этими каналами с наружной стороны мембраны вызывает изменение их конформации-каналы открываются, пропуская через мембрану ионы и тем самым изменяя мембранный потенциал. В отличие от потенциал-зависимых каналов, ответственных за возникновение потенциалов действия и выделение медиатора, лигаяд-зависимые каналы относительно нечувствительны к изменениям мембранного потенциала (рис. 18-29) и потому не способны к самоуснливающемуся возбуждению типа все или ничего . Вместо этого они генерируют электрический сигнал, сила которого зависит от интенсивности я продолжительности внешнего химического сигнала, т.е. от того, сколько медиатора выводится в синаптическую щель и как долго он там остается. Это свойство лиганд-зависимых каналов важно для обработки информации в синапсах, и мы рассмотрим его позднее. [c.99]


    Когда потенциал действия достигает нервного окончания, он вызывает путем деполяризации высвобождение медиатора. Последний диффундирует через синаптическую щель к постсинаптической ме.мбране, вызывая изменения ее ионной проницаемости и, следовательно, ме.мбралного потенциала (гл. 5). Это в свою очередь может приводить к генерации потенциала действия. [c.194]

    Ацетилхолин удаляется п синаптической щели путем хщффузии или в результате гидролиза [18] [c.100]

    Де Робертис и Беннет в 1955 г. открыли в нервном окончании сферические структуры — так называемые синаптические везикулы (рис. 8.3). Они предположили, что эти структуры действуют как органеллы, содержащие запасенный медиатор, который, хак установили Кастильо и К Ц на основании своих работ по миниатюрным потенциалам концевых пластинок, высвобождается дпскретными квантами при нервном возбуждении, а также спонтанно в состоянии покоя. Постсинаптические потенциалы всегда кратны этому кванту (гл. 5). Синаптические везикулы были выделены, и наличие в них ацетилхолина определено одновременно лабораториями Уиттейкера и Де Робертиса в 1963 г. Остался лишь вопрос, высвобождался ли медиатор непосредственно в синаптическую щель или попадал туда через цитоплазму. Мы еще вернемся к этой проблеме при обсуждении механизма высвобождения медиатора, а здесь опишем только, как ацетилхолин попадает в запасающие его везикулы. [c.198]

    Как молекула нейромедиатора, высвобождающаяся из пресинаптической мембраны, достигает постсинаптической мембраны Напрашивается простой ответ — посредством диффузии. Но здесь необходимо объяснить, как медиатор диффундирует мимо многочисленных молекул ацетилхолинэстеразы, которые присутствуют в синаптической щели и теоретически могли бы гидролизовать во много раз большие количества высвобожденного медиатора, сделав, следовательно, невозможным его взаимодействие с постсинаптической мембраной. Предполагается, что этому препятствуют либо структурные особенности вещества синаптической щели — базальной мембраны, которое, возможно, образует каналы, либо временное ингибирование ферментативной активности эстеразы, вероятно, из-за ее взаимодействия с иостспнантической мембраной или из-за насыщения субстратом. Высказано также предположение, что эстераза не присутствует в щели, т. е. на пути диффузии ацетилхолина, а находится в постсинаптической мембране, но такая модель не доказана [8]. [c.201]

    Постсинаптический потенциал длится всего несколько миллисекунд, если он не усиливается дополнительным высвобождением молекул медиатора, а концентрация ацетилхолина в синаптической щели уменьшается в результате диффузии и гидролиза. Медиатор инактивируется ферментом ацетилхолинэстеразой (КФ 3.1.1.7), который был выделен в кристаллическом состоянии Нахманзоном [8] и является одним из наиболее часто обновляющихся ферментов. [c.205]

    Имеются также данные о наличии Ыа+-зависимого высокоаффинного поглощения, которое отвечает за инактивацию этого медиатора путем его удаления из синаптической щели. Фармакология отдельных стадий серотонинового цикла исследована слабо. Мы уже упоминали здесь механизм действия LSD. п-Хлорофенилаланин представляет собой сильный ингибитор триптофангидроксилазы и благодаря такой специфичности используется для определения участия серотонина в том или ином типе поведения. [c.228]

    Цикл медиатора 1) синтез, 2) поглошение везикулами 3) если первое и второе происходят в перикарионе, то экзо-плазматический транспорт к нервным окончаниям, 4) пресинаптическое высвобождение при деполяризации в синаптическую-щель (экзоцитоз), 5) диффузия к постсинаптической мембране, 6) узнавание и связывание специфическим рецептором, например мембранным белком (чтобы включился воротной механизм постсинаптической мембраны), 7) инактивация. [c.238]

    Рис 45 Схематичное строение нервно мышечного синапса по С Куфлеру и Дж Николсу (1979) 1 — частички 2 — ямки 3 — синаптические визикулы 4 — пресинаптическая мембрана 5 — постсинаптическая мембрана 6 — складки постсинаптической мембраны 7 — синаптическая щель [c.131]

    Сигналы, проводимые нейронами, передаются от одной клетки к другой в особых местах контакта, называемых синапсами (рис. 18-3). Обычно эта передача осуществляется, как это ни странно на первый взгляд, непрямым путем. Клетки электрически изолированы друг от друга пресииаптическая клетка отделена от постсинаптической промежутком-синаптической щелью. Изменение электрического потенциала в пресинаптической клетке приводит к высвобождению вещества, называемого ненромедиатором (или нейротрансмиттером), которое диффундирует через синаптическую щель и вызывает изменение электрофизиологического состояния постсинаптической клетки. Та- [c.73]

Рис. 18-3. Схема типичного синапса. Элеггричесжий сигнал, приходящий в окончание аксона клетки А, приводит к высвобождению в синаптическую щель химическое го посредника (иейромеднатораХ который вызывает электрическое изменение в мембране деидрита клетки В. Широкая стрелка указывает направление передачи сигнала, Аксон одного нейрона, такого как изображенный на рис. 18-2, образует иногда тысячи выходных синаптических соединений с другими клетками. И наоборот, нейрон может принимать сигналы через тысячи входных синаптических соединений, находящихся на его дендритах и теле. Рис. 18-3. Схема типичного синапса. Элеггричесжий сигнал, приходящий в окончание <a href="/info/96988">аксона</a> клетки А, приводит к высвобождению в синаптическую щель химическое го посредника (иейромеднатораХ который вызывает электрическое изменение в мембране деидрита клетки В. Широкая стрелка указывает направление передачи сигнала, <a href="/info/96988">Аксон</a> одного нейрона, такого как <a href="/info/50722">изображенный</a> на рис. 18-2, образует иногда тысячи выходных синаптических соединений с другими клетками. И наоборот, <a href="/info/101636">нейрон</a> может принимать сигналы через тысячи входных синаптических соединений, находящихся на его дендритах и теле.

Смотреть страницы где упоминается термин Синаптическая щель: [c.43]    [c.327]    [c.331]    [c.332]    [c.286]    [c.287]    [c.112]    [c.639]    [c.163]    [c.120]    [c.196]    [c.204]    [c.290]    [c.292]    [c.297]    [c.27]    [c.130]    [c.184]    [c.458]    [c.74]    [c.95]    [c.97]   
Биохимия Том 3 (1980) -- [ c.325 , c.326 ]




ПОИСК







© 2025 chem21.info Реклама на сайте