Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейротрансмиттеры

    Как известно, клетки нервной системы (нейроны) не имеют непосредственного контакта друг с другом. Они разделены синаптическими щелями, через которые сигнал (передаваемый в виде бегущей по нейронной мембране волны поляризации-деполяризации) пройти не может без определенного посредника, называемого нейромедиатором (или нейротрансмиттером). Передача нервного импульса от одного нейрона к другому происходит следующим образом (рис. 3, схема А). По достижении нервным сигналом конца возбужденной клетки (нейрон 1) в ее пресинаптической области синтезируется нейротрансмиттер (АХ), который затем выбрасывается в синаптическую щель и быстро диффундирует к своему рецептору (R), расположенному в постсинаптической мембране покоящейся клетки (нейроне 2). [c.31]


    Объемы выделяемых нейромедиаторов (называемых также и нейротрансмиттерами) невелики. Ацетилхолин, например, выделяется дозами, каждая из которых содержит около 10 ООО молекул. Эти молекулы распределяются по синаптической щели так, что сигнал достигает рецептора. Воздействие ацетилхолина на рецептор вызывает соответствующий физиологический ответ, после чего трансмиттер подвергается разрушению. Ацетилхолин гидролизуется под действием фермента ацетилхолинэстераза (АХЭ). [c.406]

    Ацетилхолиновый рецептор. Наиболее изученными являются активируемые ацетилхолином каналы нервномышечных соединений позвоночных (двигательная концевая пластинка). Пришедший к синапсу нервный импульс вызывает освобождение в синаптическую щель нейротрансмиттера ацетилхолина  [c.132]

    Токи, измеряемые на мышечном волокне лягушки в условиях фиксации напряжения. Верхние кривые — измерения тока при малом коэффициенте усиления нижние кривые — измерения при высоком коэффициенте усиления. В покоящемся нервно-мышечном окончании ток, регистрируемый при слабом усилении, равен нулю. Запись, сделанная при высоком коэффициенте усиления, отображает низкий уровень шума и одиночный импульс входящего тока, вызванный спонтанным выделением нейротрансмиттера из одиночного пресинаптического пузырька. При аппликации низкой концентрации ацетилхолина на малом усилении регистрируется большой постоянный входящий ток. Записи, сделанные при высоком усилении выявляют флуктуации, вызванные стохастическим открыванием большого числа каналов. Температура 8° С. [c.145]

Рис. 1-40. Сравнение гормональной и нервной сигнализации. Эндокринная клетка при стимуляции высвобождает гормоны в кровяное русло, и циркулирующие гормоны вызывают ответ в любой клетке, чувствительной к ним, независимо от того, где она находится Нервная клетка при стимуляции генерирует потенциал действия, распространяющийся вдоль аксона и быстро запускающий высвобождение нейротрансмиттера с окончания аксона нейротрансмиттер действует только на клетки, находящиеся в непосредственной близости от окончания аксона. Рис. 1-40. Сравнение гормональной и <a href="/info/1413711">нервной сигнализации</a>. <a href="/info/511106">Эндокринная клетка</a> при стимуляции высвобождает гормоны в кровяное русло, и циркулирующие <a href="/info/1903625">гормоны вызывают</a> ответ в любой клетке, чувствительной к ним, независимо от того, где она находится <a href="/info/103255">Нервная клетка</a> при стимуляции генерирует <a href="/info/101645">потенциал действия</a>, распространяющийся вдоль аксона и быстро запускающий высвобождение нейротрансмиттера с <a href="/info/96989">окончания аксона</a> нейротрансмиттер действует только на клетки, находящиеся в непосредственной близости от окончания аксона.
Рис. 6-62. Химический синапс. Приходящий к нервному окончанию потенциал действия стимулирует высвобождение нейротрансмиттера содержащегося в секреторных пузырьках и высвобождаемого из клетки при слиянии пузырьков с плазматической мембраной нервного окончания. Рис. 6-62. <a href="/info/265917">Химический синапс</a>. <a href="/info/1436012">Приходящий</a> к <a href="/info/510193">нервному окончанию</a> <a href="/info/101645">потенциал действия</a> стимулирует высвобождение нейротрансмиттера содержащегося в секреторных пузырьках и высвобождаемого из клетки при слиянии пузырьков с плазматической мембраной нервного окончания.

    Белки-каналы образуют в бислое заполненные водой поры, позволяя, таким образом, неорганическим ионам подходящего размера и заряда перемещаться через мембрану по их электрохимическим градиентам. Скорость прохождения в этом случае по крайней мере в 1000 раз выше, чем при транспорте с помощью белков-переносчиков. Эти ионные каналы имеют ворота и обычно открываются на короткое время в ответ на специфические возбуждения в мембране, такие, как связывание нейротрансмиттеров (нейротрансмиттер-зависимые воротные каналы) или изменение мембранного потенциала (потенциал-зависимые воротные каналы).  [c.407]

    В-третьих, тканеспецифические межмолекулярные взаимодействия РП находят отражение в активности нейронов мозга и влияют на выделение нейротрансмиттеров. Мозг (центральная нервная система) контролирует и координирует пептидную саморегуляцию на уровне целого организма. По-видимому, не случайно локальное нарушение или общее понижение пептидной саморегуляции сопровождается симптомами психической депрессии, особенно характерной для пожилых и старых людей. [c.186]

    Ингибирует соматотропин и секреторную функцию поджелудочной железы, может действовать как нейротрансмиттер эффекты в разных тканях различаются [c.212]

    Нейротрансмиттер, стимулирует выделение ацетилхолина [c.212]

    Содержится в нервных клетках кишечника нейротрансмиттер, понижает давление, вазодилататор [c.215]

    По месту образования гормоны разделяют на нейрогормоны, гормоны, секретируемые специальными железами, и тканевые гормоны. Классификация часто затруднена, так как не во всех случаях точно определены места образования и воздействия. Согласно общепринятому определению гормонов, вещества, которые, диффундируя, действуют вблизи места их образования, не должны называться гормонами, однако все же часто к гормонам относят нейротрансмиттеры (ацетилхолин, допамин, норадреналин, серотонин, гистамин, глутамат, глицин, -у-аминобутират, таурин, вещество Р и многие другие пептиды), а также модуляторы нейронной активности нейрогормонов [569]. Возможно, не будет ошибкой рассматривать классическую эндокринологию как одну из областей нейроэндокрииологии. Мозг уже характеризуется как высокоспециализированная эндокринная железа , ибо в общем нейротрансмиссия связана с секреторными процессами, в то время как электрическая передача нервных импульсов представляет собой исключительный случай. Несмотря на трудность четкого определения, все активные в отношении центральной нервной системы пептиды следует называть нейропептидами (разд. 2.3.3), при этом понятие нейрогормоны должно соответствовать действующей классификации гормонов. [c.233]

    Из различных исследований следует, что меланотоопины образуются в различных областях центральной нервной системы. Им приписывается функция нейромодуляторов или нейротрансмиттеров. Учитывая существование в составе проопиомеланокортина нескольких последовательностей МСГ, не будет ощибкой сказать, что освобождающиеся при расщеплении предщественника пептиды включаются в работу нервной системы. [c.247]

    Эти гормоны регулируют образование и выделение пролактина в передней доле гипофиза. Несмотря иа множество частично противоречащих друг другу данных, ясных лредставлеиий о структуре обоих постулированных гормонов пока иет, ио предполагается, что аналогично известным либеринам оии также могут быть пептидными гормонами или нейротрансмиттерами. [c.258]

    Эффекты, наблюдаемые при действии нейропептидов на центральную нервную систему, весьма разнообразны. Они могут действовать как нейротрансмиттеры (разд. 2.3.1.14), контролировать физиологический сои, оказывать влияние на процессы обучения, обладать обезболивающим действием и др. Эти факты заставили по-новому взглянуть на традиционные представления о действии и функциях гормонов. Действительно, становится все труднее однозначно разграничить гормональное действие от других инициированных биологических нли физиологических эффектов. Различные пептидные гормоны воздействуют непосредственно на мозг и влияют на поведение и обучаемость. С целью изучения возможности применения для гера-певтического лечения болезни Паркинсона, шизофрении, нарушений памяти и др. было осуществлено клиническое испытание многих пептидных препаратов. Наибольший интерес вызывают АКТГ, МСГ и вазопрессин, оказывающие действие на центральную нервную систему в некоторых поведенческих экспериментах на животных. Из различных поведенческих тестов прежде всего, должен быть назван так называемый тест избегания , в котором животное пассивно или активно учится избегать неприятной ситуации (например, электрошока). Приобретенные рефлексы устойчивы лишь некоторое время, а затем постепенно угасают. Де Виду [751] удалось выделить из мозга подопытных животных (крыс) пептид, охарактеризованный как [дeз-Gly-NH2]вaзoпpe ин. Этот пептид, вероятно, образуется из [Arg ]aa30-прессина и проявляет отчетливое действие в тесте избегания. Так, при введении данного пептида, а также самого вазопрессина в мозг заметно повышается устойчивость выработанного поведенческого рефлекса. Фаза исчезновения рефлекса удлиняется. При половой мотивации эффект проявляется особенно отчетливо. [c.286]

    Биологическое действие -МСГ, как и других форм, не ограничивается меланотропной активностью, на которую прежде всего было обращено внимание, что и нашло отражение в названии семейства этих гормонов. Помимо влияния на пигментацию кожи и волос они обнаруживают ряд других активностей. Так, -МСГ является сильнодействующим натрий- и калий-уретическим фактором, влияет на выделение гормона роста, проявляет стероидогенную, липолитическую активность, оказьшает положительное влияние на нервную и мышечную системы. Инъекция -МСГ млекопитающим и человеку вызьшает увеличение частоты сердечных сокращений, гиперчувствительность и ряд поведенческих актов. Клинические данные показывают, что гормон повышает чувствительность сетчатки и улучшает адаптацию глаза к темноте. Имеются сведения, которые указывают на роль меланотропинов в качестве нейротрансмиттеров и нейромодуляторов центральной нервной системы. Отмечаются положительные эффекты МСГ на внимательность и память [198-206]. [c.363]


    Сигналы, проводимые нейронами, передаются от одной клетки к другой в особых местах контакта, называемых синапсами (рис. 18-3). Обычно эта передача осуществляется, как это ни странно на первый взгляд, непрямым путем. Клетки электрически изолированы друг от друга пресииаптическая клетка отделена от постсинаптической промежутком-синаптической щелью. Изменение электрического потенциала в пресинаптической клетке приводит к высвобождению вещества, называемого ненромедиатором (или нейротрансмиттером), которое диффундирует через синаптическую щель и вызывает изменение электрофизиологического состояния постсинаптической клетки. Та- [c.73]

    Препараты первой группы предназначены для уничтожения паразитов (вирусы, бактерии, грибы, простейшие, гельминты и опухолевые клетки). Препараты второй группы действуют на центральную и (или) периферическую нервные системы, непосредственно взаимодействуя с рецепторами через нейротрансмиттеры или по менее специфичным механизмам, как, например, в случае местных или общих анестетиков. К третьей группе относятся вещества, действующие на ферментативные и иммунные процессы, а также вещества с гормональной или антигор-мональной активностью. Естественно, что такая классификация несколько условна, поскольку нередко наблюдается перекрывание сфер действия. Нередко химиотерапевтические агенты оказываются ингибиторами ферментов, а антигельминтные препараты блокируют нервно-мышечную передачу. [c.19]

    Передача действия нервного импульса на другие клетки происходит в специальных образованиях, которые называются синапсами. Синапсы — это места контакта нервного окончания с поверхностной мембраной регулируемой клетки. Они включают пресинаптическую и постсинаптическую мембраны, а также синаптическую щель (рис. 110). Выделяют электрические и химические синапсы. В химических синапсах передача нервного импульса происходит с участием нейромедиаторов (нейротрансмиттеров). Нейромедиаторами являются такие химические вещества, как ацетил-холин, адреналин, норадреналин, а также дофамин, серотонин, глутамин, глицин, ГАМК и др. Синапс приспособлен к быстрому выбросу нейромедиатора, образующегося в эфферентных нервных клетках в синаптических пузырьках. Поэтому нервная система оказывает быстрое воздействие на довольно ограниченный участок органа. Поскольку скелетные мышцы регулируются химическими синапсами с участием нейропередатчика ацетил- [c.277]

    Намного больше известно о структуре другого класса ионных каналов, открывающихся в ответ на связывание специфических нейротрансмиттеров, а не на изменения мембранного потенциала. Эти трансмиттер-заеисимые ионные каналы также принадлежат к одной группе родственных белков. Однако в отличие от потенциал-зависимых Na " - и Са""-каналов, каждый из которых образован одной длинной полипептидной цепью, все изученные трансмиттер-зависимые ионные каналы построены из нескольких гомологичных субъединиц. [c.402]

    Трансмиттер-зависимые ионные каналы приспособлены для превращения внеклеточных химических сигналов в электрические сигналы. Они располагаются обычно в специализированных соединениях (называемых химическими синапсами), расположенных между нервными клетками и клетками-мишенями. Эти каналы концентрируются на плазматической мембране клетки-мишени в области синапса. Каналы способны открываться на некоторое время в ответ на связывание нейротрансмиттера, высвобождаемого нервным окончанием. При этом меняется проницаемость постсинаптической мембраны клетки-мишени (рис. 6-62). В отличие от потенциал-зависимых каналов, ответственных за возникновение потенциалов действия, трансмиттер-зависимые каналы относительно нечувствительны к мембранном) потенциалу и поэтому неспособны к самоусиливающемуся возбуждению. Вместо этого они изменяют проницаемость мембраны и, следовательно, влияют на мембранный потенциал. Величина этого изменения зависит от того, сколько трансмиттера высвободилось в синапсе и в течение какого времени он там присутствует. Ясно, что потенциал действия может возникнуть только при условии, что потенциал-зависимые каналы также присутствуют в этой же мембране клетки-мишени. [c.402]

    Высвобожденный нейротрансмиттер связывается с трансмиттер-зависимыми ионными каналами, сконцентрированными на плазматической мембране постсинаптической клетки, и открывает их. В результате тока ионов изменяется мембранный потенциал клетки-мищени Таким образом [c.403]

    Некоторые белки непрерывно секретируются производяшими их клетками. Нри этом они упаковываются в транспортные пузырьки в аппарате Гольджи и затем переносятся непосредственно к плазматической мембране. В этом случае говорят о конститутивном пути секреции. В других клетках определенные белки и/или малые молекулы запасаются в специальных секреторных пузырьках, которые сливаются с плазматической мембраной только после получения клетки соответствуюш,его сигнала извне. Этот процесс носит название регулируемого пути секреции (рис. 6-69). Конститутивный путь осуш,ествляется во всех клетках, а регулируемый путь обнаружен главным образом в клетках, приспособленных для секреции производимых ими вешеств в зависимости от определенных потребностей. Обычно это гормоны, нейротрансмиттеры или перевариваюш,ие ферменты. В таких специализированных секреторных клетках сигналом к секреции часто служит химический медиатор, например, гормон, связываюш,ийся с рецепторами на клеточной поверхности. В результате происходит активация рецепторов, которая генерирует внутриклеточный сигнал, зачастую включающий кратковременное повышение концентрации свободного Са " в цитозоле (см. разд. 12.3.7). С помощью неизвестного механизма этот сигнал (сигналы) инициирует процесс экзоцитоза, побуждая секреторные пузырьки к слиянию с плазматической мембраной и. таким образом, к высвобождению их содержимого во внеклеточное пространство. [c.409]

    Система нейронов контролирует и координирует функции всех органов и поведение организма в целом. Нейроны относятся к семейству электрически возбудимых клеток. Кроме нейронов к этому семейству относятся клетки мускулатуры и эндокринные клетки. При деполяризации клеточной мембраны нейроны генерируют потенциал действия, или нервный импульс, который распространяется по аксону от одного нейрона к другому со скоростью до 100 м/с. Длина аксонов разных нейронов различается, но самая большая может достигать 1 м (Alberts et al., 1994). Причиной деполяризации клеточной мембраны могут быть разные физико-химические факторы, в том числе нейротрансмиттеры пептидного типа. [c.59]

    Необходимо отметить важную роль сиаловой кислоты, которая является концевым звеном гликозидной части многих мембранных рецепторов и детерминант и имеет постоянный отрицательный заряд. Кроме того, она входит в состав гликосфинголипидов плазматической мембраны нейронов и синаптической мембраны и принимает участие в процессе выделения нейротрансмиттеров. Процесс возбуждения мозга также происходит с участием сиаловых кислот. Целый ряд возрастных патологий мозга, в том числе болезнь Альцгеймера (БА), сопровождается общим снижением уровня сиалсодержащих ганглиозидов и цереброзидов (Кеииег е а1., 1982). [c.128]

    Несмотря на многоуровневую иерархию, все механизмы регуляции гомеостаза выполняют в принципе единую задачу, а именно координируют процессы биосинтеза в клетках организма путем воздействия на экспрессию генов. По современным представлениям, регуляция гомеостаза многоклеточных систем осуществляется с помощью нейроэндокринных и иммунологических механизмов. Наиболее изучена роль нервных и гормональных воздействий на процессы, позволяющие организму контролировать постоянство внутренней среды (Гомеостаз, 1981). Известно, что нервная и эндокринная системы модулируют функции иммунной системы с помощью нейротрансмиттеров, нейропептидов и гормонов, а иммунная система взаимодействует с нейроэндокринной системой с помощью цитокинов, иммунопептидов и иммунотрансмиттеров. Иммунная система обеспечивает сохранение генетического постоянства клеточного состава, т. е. она является одним из гомеостатических механизмов поддержания целостности организма (Иммунофизиология, [c.161]


Смотреть страницы где упоминается термин Нейротрансмиттеры: [c.253]    [c.260]    [c.287]    [c.338]    [c.3]    [c.195]    [c.374]    [c.564]    [c.425]    [c.70]    [c.136]    [c.456]    [c.396]    [c.403]    [c.404]    [c.9]    [c.112]    [c.113]    [c.338]    [c.363]    [c.139]    [c.169]    [c.211]    [c.37]   
Аминокислоты Пептиды Белки (1985) -- [ c.72 , c.89 , c.90 , c.233 , c.247 , c.260 , c.280 , c.286 , c.287 , c.294 ]




ПОИСК







© 2024 chem21.info Реклама на сайте