Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия комбинационного рассеяния рамановская спектроскопия

    Спектроскопия комбинационного рассеяния рамановская спектроскопия). Как показано на рис. 2.2, процесс рассеяния можно рассматривать как процесс поглощение фотона лазерного излучения молекулой, что ведет к ее возбуждению на некоторый высокий виртуальный [c.20]

    Составлен обзор [1389] методов лазерной рамановской спектроскопии, включающий работы по исследованию поливинилхлорида. Полосы при 1124 и 1511 см в рамановских спектрах ПВХ после термической деструкции, согласно данным работы [1390], связаны с резонансным комбинационным рассеянием на сопряженных полиеновых звеньях. Рамановскую спектроскопию использовали (1391] для исследования полиеновых звеньев в деструктированных образцах ПВХ идентифицированы полосы, относящиеся к валентным колебаниям С—С1. [c.304]


    Комбинационное рассеяние света (КРС) - рассеяние света исследуемым веществом, связанное со структурой его молекулы и сопровождаемое заметным изменением длины волны рассеиваемого света [33]. Явление было открыто в 1928 в зарубежной литературе КРС обычно называют эффектом Рамана [34], откуда возникло название рамановская спектроскопия . [c.206]

    Спектры комбинационного рассеяния (рамановская спектроскопия) [c.50]

    Когерентная антистоксова рамановская спектроскопия (КАРС). Когерентная антистоксова рамановская спектроскопия тесно связана со спектроскопией комбинационного рассеяния. В этом методе помимо накачивающего лазерного излучения с частотой > накач излучается дополнительное стоксово излучение с частотой г сток (рис. 2.4). Взаимодействие лазерного излучения с молекулами генерирует излучение с частотой 4<АРС = 2г/ акач - 1 сток (рис. 2.4). [c.22]

    Рассмотреть основные принципы важнейших методов молекулярной спектроскопии спектроскопии в ультрафиолетовой (УФ) и видимой областях, инфракрасной (ИК) спектроскопии и спектроскопии комбинационного рассеяния (КР, или рамановской спектроскопии), спектроскопии ядерного магнитного резонанса (ЯМР) на ядрах и масс-спектрометрических методов. [c.146]

    Рамановские спектры (спектры комбинационного рассеяния света) обусловлены изменением колебательных и вращательных подуровней одновременно (разд. 5.5). Такие переходы происходят в близкой инфракрасной области, и рамановская спектроскопия дополняет информацию, полученную с помощью вращательных и колебательно-вращательных спектров. В биохимии рамановская спектроскопия применяется редко. [c.144]

    Мощные лазерные источники света произвели настоящую револювд1Ю в аналитической оптической спектроскопии. Первым и прямым следствием их использования стало повышение чувствительности. В особых случаях, применяя резонансно стимулированную двухфотонную ионизахщю с помощью перестраиваемого лазера, удается достичь предельно возможной чувствительности — добиться обнаружения единственного атома (атом цезия) или всего одной молекулы вещества (нафталина). К этому же невероятному пределу приближается чувствительность метода индуцированной лазерной флуоресценции. С помощью лазерного зондирования можно обнаруживать загрязнения в атмосферном воздухе на расстоянии больше одной мили. Особенно хорошие результаты дает флуоресцентное возбуждение или лазерная раман-спектрометрия. В этом методе в сторону исследуемого объекта, например в сторону столба дыма, направляют импульс лазерного света и измеряют время, через которое появляется сигнал флуоресценции или сигнал комбинационного рассеяния (рамановский сигнал). Зная скорость света, можно определить, на каком удалении находится объект. Таким образом, сигнал не только расскажет нам, какие вещества (загрязняющие воздух соединения) находятся в объекте, но также позволит проследить, как они распространяются от источника загрязнений. [c.196]


    Спектроскопия комбинационного рассеяния (рамановская спектрофотометрия) [c.165]

    ИК-спектроскопия и КР- (комбинационного рассеяния, или рамановская) спектроскопия принадлежат к группе молекулярных колебательных методов, которые вместе с ЯМР-спектроскопией (спектроскопией ядерного магнитного резонанса), масс-спектрометрией, и хроматографией составляют основу современного органического анализа, включающего структурный анализ, микроанализ и анализ поверхности. [c.164]

    Несмотря на эти недостатки, спектроскопию КР применяли для исследования некоторых систем металл — лиганд [12—15], а также для изучения взаимодействия комплексов платины (II) с такими основаниями, как цитидин и уридин [16]. Проблема низкой интенсивности спектров КР может быть решена использованием спектроскопии резонансного комбинационного рассеяния. В ней частота рамановского возбуждения соответствует частоте полосы электронного спектра поглощения лиганда или комплекса. Впервые этот метод применили для исследования взаимодействия тетрацианэтилена с органическими электронодонорными соединениями. Полученные константы устойчивости, несмотря на сравнительно низкую воспроизводимость, хорошо согласуются с величинами, определенными другими методами [17]. В связи со снижением общей интенсивности из-за поглощения излучения образующимся комплексом в качестве внутреннего стандарта использовали полосу растворителя. [c.148]

    Инфракрасная и рамановская (комбинационного рассеяния) спектроскопия — возбуждение враш ательных и колебательных уровней. [c.34]

    На практике изучают спектры поглощения электромагнитного излучения с частотами, близкими к частотам колебаний атомов, — инфракрасный (ИК) диапазон (10—10000 сМ ), спектры неупругого (с рождением или уничтожением фонона) рассеяния электромагнитного излучения видимого или ультрафиолетового (УФ) диапазона (комбинационное, или рамановское, рассеяние), рентгеновского излучения или тепловых нейтронов. Инфракрасная спектроскопия и спектроскопия комбинационного рассеяния (КР) позволяют достичь максимального разрешения по энергиям, но из-за малого волнового числа первичного излучения дают информацию (если пренебречь многофононными эффектами, имеющими весьма малую интенсивность) только о колебательных состояниях вблизи центра зоны Бриллюэна (оптическим модам при квазиимпульсе, равном нулю). Кроме этого ограничения в обоих методах существуют правила отбора по симметрии ё спектрах поглощения (ИК спектрах) наблюдаются колебательные моды, характеризующиеся изменением дипольного момента, а в спектрах КР — колебания, при которых изменяется квадрупольный момент. Таким образом, эти две методики дополняют друг друга, и для получения более полной информации о колебательном спектре изучаемого вещества желательно иметь оба спектра. В то же время часть колебаний оказывается неактивной ни в ИК спектрах, ни в спектрах КР (так называемые немые моды). Применение для исследования колебательной структуры твердых тел неупругого рассеяния нейтронов лишено всех упомянутых выше ограничений, но в значительной степени ограничено существенно меньшим разрешением и необходимостью много большего количества вещества для проведения эксперимента. Так, спектры неупругого рассеяния нейтронов на различные углы позволяют, в принципе, определить дисперсионные кривые для всех колебательных мод. Однако низкое разрешение приводит к тому, что подобный анализ возможен лишь для относительно простых систем, а в большинстве случаев возможно рассмотрение только усредненного по всей зоне Бриллюэна суммарного спектра всех колебательных мод. [c.272]

    КОМБИНАЦИОННОГО РАССЕЯНИЯ СПЕКТРОСКОПИЯ (рамановская спектроскопия), раздел оптич. спектроскопии, изучающий взаимод. монохроматич. излучения с в-вом, сопровождающееся изменением энергии рассеянного излучения по сравнению с энергией падающего на объект (возбуждающего) излучения. Комбинац. рассеяние (КР) обусловлено неупругими столкновениями фотонов с молекулами (или ионами), в ходе к-рых они обмениваются энергией. По изменению энергии фотона можно судить об изменении энергии молекулы, т.е. о переходе ее на новый энергетич. уровень. Схематически эти переходы показаны на рис. 1. Молекула, находящаяся в невозбужденном состояиии [c.436]

    Обычный рамановский эффект очень слаб, и его можно использовать только для определения основных компонентов. Однако интенсивности сигналов можно увеличить в 10 раз, используя резонансный рамановский эффект. Усиление достигается благодаря использованию возбуждающего излучения с длиной волны, соответствующей электронным переходам в образце (см. рис. 9.2-2). Резонансную рамановскую спектроскопию уже используют в массовом масштабе, но здесь мы не будем подробно останавливаться на этом методе. В случае определения ароматических соединений с использованием лазерных источников в УФ/вид.-области, как обычные, так и резонансные рамановские эффекты могут быть подавлены флуоресценщ ей, более интенсивной, чем комбинационное рассеяние, в раз (см. разд. 9.1.5). [c.167]


    Рамановская спектроскопия. Экспериментальные спектры комбинационного рассеяния света (КР) некоторых индивидуальных гомологов н-парафинов получены Т Н. Мороз (Институт геологии и геофизики СО РАН, Новосибирск). Они изучены при комнатной температуре в диапазоне 1400-1500 сл/ спектрометр Ramanor U1000, Аг+514/5 нл<. [c.120]

    Значительно более разнообразны методы второй группы, использующие эхо-сигнал на смещенной длине волны спонтанное комбинационное рассеяние (СКР), рамановская спектроскопия комбинационного рассеяния (РСКР), когерентная антистоксова рамановская спектроскопия (КАРС), оптоакустические методы лазерной спектроскопии. Среди прочих методов лазерная флуориметрия выделяется простотой реализации, высокой чувствительностью, однако обладает слабой селективностью. Улучшение селективности потребовало создания ряда модификаций флуориметрии методов синхронной флуориметрии, метода ТЬ8-диаграмм, метода на основе эффекта Шпольского и др., а также интенсивного развития численных методов обработки спектров флуоресценции многокомпонентных органических смесей. Еще одним решением проблемы многокомпонентного флуоресцентного анализа является использование кинетической спектроскопии. [c.165]

    Далее для исследования 2-норборнильного катиона был использован метод рамановской спектроскопии. Как известно, метод КРС (комбинационного рассеяния света) позволяет изучать частицы, имеющие относительно малое время жизни в сравнении с временем съемки ПМР-спектра. Так как скорость колебательных переходов больше, чем скорости Н-сдвигов или Вагнер-Меервейновской перегруппировки, то в области скелетных колебаний спектр классического иона должен быть похож на спектр производных норборнана, а неклассического иона — производных нортрициклена. [c.143]


Смотреть страницы где упоминается термин Спектроскопия комбинационного рассеяния рамановская спектроскопия : [c.163]    [c.106]    [c.77]    [c.657]    [c.287]    [c.149]   
Горение Физические и химические аспекты моделирование эксперименты образование загрязняющих веществ (2006) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Комбинационное рассеяние

Спектроскопия комбинационного

Спектроскопия комбинационного рассеяни

Спектроскопия комбинационного рассеяния

Спектроскопия комбинационного рассеяния (рамановская спектрофотометрия)

Спектры комбинационного рассеяния (рамановская спектроскопия)



© 2025 chem21.info Реклама на сайте