Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фолиевая в образовании метильных групп

    Серии служит также основным источником глицина (стадия г) и одноуглеродных остатков, используемых для синтеза метильных и фор-мильных групп. Основной путь образования глицина из серина [70] — это реакция, катализируемая сериноксиметилазой (стадия г, рис. 4-12) в меньшей степени превращение идет через образование фосфатидил-серина, фосфатидилхолина и свободного холина [уравнение (14-30)]. Вследствие ограниченной способности нашего организма к синтезу метильных групп холин во многих случаях должен обязательно поступать в организм с пищей, в связи с чем его причисляют к витаминам. Однако в присутствии достаточных количеств фолиевой кислоты и витамина В12 организм уже не испытывает абсолютной потребности в холине. Холин может быть использован непосредственно для превращения обратно в фосфатидилхолин (рис. 12-8), но его избыток может подвергаться дегидрированию в бетаин [уравнение (14-30)]. Последнее соединение, содержащее четвертичный атом азота, является одним из немногих метаболитов, которые, подобно метионину, могут поставлять метильные [c.118]


    Имеются данные, что производные ТГФК участвуют в переносе одноуглеродных фрагментов при биосинтезе метионина и тимина (перенос метильной группы), серина (перенос оксиметильной группы), образовании пуриновых нуклеотидов (перенос формильной группы) и т.д. (см. главы 12 и 13). Перечисленные вещества играют исключительно важную, ключевую, роль в биосинтезе белков и нуклеиновых кислот, поэтому становятся понятными те глубокие нарушения обмена, которые наблюдаются при недостаточности фолиевой кислоты. [c.232]

    Имеется ряд данных, указывающих на участие фолиевой кислоты как в синтезе, так и в переносе метильных групп (и вообще одноуглеродистых фрагментов) при образовании ряда веществ в организме. Биохимическая роль коэнзимов, содержащих фолиевые кислоты, сводится к образованию и использованию одноуглеродистых фрагментов в синтезе различных веществ метилирование этаноламина в холин (стр. 101), гомоцистеина в метионин (стр. 348), урацила в тимин (стр. 56) включение формиата (Н—С—ОН) при [c.174]

    СНз) при биосинтезе метионина и серина и др. С-участием фолиевой кислоты в организме человека и животных могут синтезироваться метильные группы, которые переносятся на гомоцистеин с образованием метионина. Присоединение одноуглеродных фрагментов идет по атомам азота, находящихся в пятом или десятом положениях. Следовательно, ТПФК — кофермент определенных ферментов, участвующих в биосинтезе тех или иных веществ, для которых используются одноуглеродные фрагменты (белков, ДНК и всех видов РНК). [c.166]

    Ненасыщенные жирные кислоты, являясь разобщителями окислительного фосфорилирования, ускоряют процессы окисления в митохондриях и тем самым регулируют избыточное отложение жиров. К липотропным факторам относятся также холин, метионин, инозит, серии, пиридоксальфосфат (витамин 85) — вещество, облегчающее декарбоксилирование серин-фосфатидов, донор метильных групп — метионин, фолиевая кислота и витамин В,2> участвующие в переносе метильных групп, липокаин, образующийся в эпителии мелких протоков поджелудочной железы. Они активируют образование в печени фосфолипидов, предохраняя ее от ожирения. Липотропные факторы широко применяются для регуляции липидного обмена в медицине, а также в спортивной практике. [c.208]

    Некоторым витаминам принадлежит особо важная роль в азотистом обмене. Подвергаясь в организме фосфорилированию, а в некоторых случаях более сложным превращениям, они дают начало образованию небелковых компонентов ферментов, катализирующих реакции превращения аминокислот. Витамин Ва (флавин) является составной частью кофермента оксидазы О- и .-аминокислот и аминооксидаз. Пантотеновая кислота входит в состав кофермента ацилирования, играющего важную роль в обмене безазотистых соединений, образующихся из аминокислот (а-кетокислот и др.) и ряда азотистых веществ. Фолиевая кислота и ее производные участвуют в процессах, приводящих к использованию метильных групп метионина, формильных, оксиметильных групп (остатков муравьиной кислоты и формальдегида), возникающих при превращении ряда аминокислот (серина, глицина, гистидина, триптофана). Особо важное место в азотистом обмене занимает витамин В( (пиридоксаль). В виде своего фосфорного эфира Вд служит коферментом ряда ферментов, участвующих в превращениях аминокислот. В частности, ферменты, катализирующие переаминирование аминокислот, содержат в виде кофермента пиридоксальфосфат. Авитаминоз В сопровождается, особенно у микроорганизмов, ослаблением и даже прекращением реакций переаминирования. Пиридоксальфосфат является также коферментом декарбоксилаз аминокислот. Вместе с этим тшридоксальфосфат входит (в виде кофермента) в состав ряда других ферментов, участвующих в превращениях определенных аминокислот (триптофана, серина, серусодержащих аминокислот). [c.433]



Смотреть страницы где упоминается термин Фолиевая в образовании метильных групп: [c.384]    [c.114]    [c.341]   
Биохимия Том 3 (1980) -- [ c.118 , c.119 ]




ПОИСК





Смотрите так же термины и статьи:

Метильная группа



© 2025 chem21.info Реклама на сайте