Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализируемые реакции

    Согласно Бендеру, роль катализатора сводится к обеспечению нового пути реакции, в котором стадия, определяющая скорость процесса (самая медленная), имеет более низкую свободную энергию активации, чем стадия, определяющая скорость некатализируемого процесса. Далее, энергия для каждого переходного состояния катализируемой реакции ниже, чем самая высокая энергия переходного состояния некатализируемой реакции (рис. 4.1). [c.190]


    Ферментативная реакция — это, как правило, многостадийный процесс, в котором на первой стадии образуется комплекс между ферментом и субстратом (комплекс Михаэлиса), Чаще всего эта стадия представляет собой сорбцию субстрата на ферменте, обусловленную, например, их гидрофобным, полярным и (или) ионным взаимодействием (см, гл. I), На образование комплекса Михаэлиса, предшествующее химическому взаимодействию, указывают многочисленные экспериментальные данные, в том числе и кинетические (см, гл. V и VI) некоторые фермент-субстратные комплексы были выделены в чистом виде [1]. Возникает вопрос, в какой мере способствует (и способствует ли) образование фермеит-субстратного комплекса ускорению катализируемой реакции. [c.34]

    Одним из наиболее распространенных в химической практике методов ускорения химических реакций является катализ. В присутствии катализатора изменяется путь, по которому проходит суммарная реакция, а потому изменяется ее скорость.Катализаторы—это вещества, изменяющие скорость реакции за счет участия в промежуточном химическом взаимодействии с компонентами реакции, но восстанавливающие после каждого цикла промежуточного взаимодействия свой химический состав. Увеличение скорости катализируемой реакции связано с меньшей энергией активации нового пути реакции.  [c.204]

    Изменение скорости катализируемой реакции за счет снижения энергии активации ее отдельных стадий можно рассмотреть на следую- [c.204]

    Изменение свободной энергии процессов взаимодействия в каталитической реакционной системе должно быть менее отрица — те ьно, чем изменение свободной энергии катализируемой реакции, то есть соединения реагирующих веществ с катализатором должны быть термодинамически менее прочными, чем продукты реакции (ес1 и это требование не соблюдается, катализатор быстро выходит из строя, образуя нерегенерируемое прочное химическое соединение). [c.88]

    Известно много примеров автокаталитических реакций, но иХ кинетика не всегда столь проста. В общем случае скорость катализируемых реакций не обязательно пропорциональна концентрации катализатора. [c.39]

    Для выполнения первого этапа, кроме чисто эмпирических сведений, необходимы представления о механизме гетерогенного катализа и в первую очередь о связи его с химическими и физикохимическими свойствами твердого вещества — катализатора — и участников катализируемой реакции. Активный и селективный катализаторы, кроме химических, должны, как правило, обладать еще определенными структурными свойствами. [c.6]


    Аналогичным образом будет обстоять дело в случае любых диаграмм химического синтеза, включающих контуры. Синтезы по таким диаграммам с контурами могут представить практический интерес лишь в очень специальных случаях (хотя они очень важны, например, для биохимии, где биологически катализируемые реакции могут протекать со 100%-ным выходом) с точки зрения обычной лабораторной практики они не заслуживают внимания. [c.191]

    Явление катализа основано на возможности возникновения промежуточных взаимодействий активного вещества катализатора с реагентами катализируемой реакции. Вследствие этого состояние активного вещества катализатора неизбежно контролируется взаимодействиями с реакционной средой и претерпевает поэтому определенные изменения. Для гетерогенных катализаторов эти изменения обычно называют реконструкцией поверхности катализа- [c.379]

    В работе [46] предложен механизм кислотно-катализируемой реакции раскрытия пятичленного кольца, который нашел подтверждение в работах других исследователей [47, 48]. Раскрытие кольца метилциклопентана происходит в результате прямого протонирования циклической структуры на кислотных участках катализатора. Первой стадией реакции является образование вторичного ациклического карбкатиона, который затем, в результате отщепления протона, превращается в гексен  [c.26]

    В дальнейшем же раскрытие пятичленного кольца протекает главным образом как кислотно-катализируемая реакция. [c.27]

    Другой пятичленный нафтен — циклопентаН), даже при добавлении 2% его к сырью риформинга, вызьшает значительное снижение стабильности алюмоплатинового катализатора [110]. Предполагают,, что образующиеся при риформинге низкомолек лярных пятичленных нафтенов (циклопентана, метилциклопентана) циклические непредельные углеводороды (возможно циклопентадиены) могут подвергаться кислотно-катализируемым реакциям, ведущим к образованию кокса [78, 103]. [c.53]

    Специфическим технологическим способом. регулирования сб - держания хлора в катализаторе служит подача хлорорганического соединения в зону катализа (см. гл. 9). Поддерживая этим путем необходимый уровень кислотности катализатора риформинга, обеспечивают высокую его активность в кислотно-катализируемых реакциях. Удаление из сырья каталитических ядов и обеспечение оптимального содержания хлора в катализаторе создают благоприятные условия для эффективной работы бифункциональных платиновых катализаторов риформинга. [c.122]

    Природа гетерогенных катализаторов весьма разнообразна и зависит от типа катализируемых реакций. В качестве катализаторов используют, главным образом, металлы в свободном [c.128]

    Пофазно катализируемая реакция протекает следующим образом  [c.24]

    Кофактор, выполняя каталитическую функцию, должен оставаться химически неизменным в результате катализируемой реакции. Если же в роли кофактора выступает истинно простетическая группа, то она осуществляет весь каталитический цикл, будучи присоединенной к одной и той же молекуле фермента. В ряде случаев, однако, кофакторы вступают в более сложные взаимодействия, будучи связующим звеном между двумя ферментами и обеспечивая тем самым образование единой ферментной системы. Такие кофакторы принято называть кофер-ментами. [c.16]

    Изменение скорости катализируемой реакции за счет снижения энергии активации ее отдельных стадий можно рассмотреть на следующем примере. Допустим, между веществами А и В возможно взаимодействие с образованием соединения АВ (АС<0)  [c.222]

    При этом сопрягающей реакцией является непосредственно катализируемая реакция (16.10), а сопряженной — циклические превращения (16.11) с участием катализатора. Сопряжение процессов происходит за счет наличия общего интермедиата ЕЯ. [c.301]

    Существенно, что обычно катализатор функционирует при больших значениях сродства (1/1 > КТ) для катализируемого брутто-процесса, т е, вдали от термодинамического равновесия. Поэтому ниже будут обсуждены некоторые явления — следствия не равновесной реконструкции катализатора, к числу которых относятся приведенные выше примеры фасетирования поверхности и миграции ионов меди, а сопряженности процессов с участием вещества катализатора и сопрягающей катализируемой реакции. [c.380]

    Во-вторых, скорость катализируемой реакции не может превысить предел, который для бимолекулярного взаимодействия следует из теории реакций, контролируемых диффузией [см. анализ исходного уравнения (2.5) на стр. 37] [28]. Это означает, что эффективная константа скорости второго порядка не может превысить значения [c.49]

    Иными словами, сущность общего кислотно-основного катализа сводится к стабилизации переходного состояния реакции за счет более благоприятного распределения электронов между разрываемыми и образующимися связями. Если это так, то катализируемую реакцию должно было бы сопровождать прежде всего понижение энтальпии активации [53]. Действительно, для целого ряда гидролитических реакций было найдено, что увеличение кинетического порядка на единицу (т. е. введение либо общеосновного, либо общекислотного катализатора) приводит к понижению наблюдаемой энтальпии активации на 3—6 ккал/моль (12,6—25,2 кДж/моль) [49] (см. также гл. 1И). Это должно, казалось бы, привести к ускорениям катализируемых реакций в 10 —10 раз. [c.63]


    Важная роль в ферментативном катализе отведена сорбции на активном центре боковых фрагментов субстратной молекулы, не претерпевающих в ходе реакции никаких химических изменений. Теоретический анализ двухцентровой модели химического взаимодействия, проведенный в гл. II, показал, что кинетическая роль подобного комплексообразования реагентов сводится фактически к стабилизации переходного состояния реакции и, тем самым, к понижению свободной энергии активации катализируемой реакции. В этом параграфе будут рассмотрены кинетические показатели некоторых неферментативных моделей, на примере которых удобно проиллюстрировать то, что реализация дополнительных взаимодействий реагентов за счет их боковых химически инертных групп действительно приводит к ускорению реакции. Это взаимодействие (типа E-R, см. схему 2.10) может быть электростатическим или гидрофобным, а также протекать с образова- [c.72]

    Полифункциональный катализ на мицеллах. Многоцентровая атака субстрата электрофильными и нуклеофильными группами фермента в принципе может привести к существенному понижению свободной энергии активации катализируемой реакции (см. 5 гл. И). Однако, как уже отмечалось, на основании одних только теоретических предпосылок трудно оценить вклад полифункционального катализа в ускорение сложных ферментативных процессов. [c.121]

    В заключение подчеркнем, что значимость модельных экспериментов ни в коей мере не обесценивается тем, что величины каталитических эффектов Б ферментативных и модельных системах пока несоизмеримы. Причина большей эффективности ферментов по сравнению с их моделями заключается фактически лишь в том, что белковые катализаторы используют (благодаря их более сложной молекулярной структуре) одновременно несколько источников ускорения катализируемой реакции. [c.123]

    В табл. 33 приведены эффективные константы скорости второго порядка каж, найденные из стационарной кинетики ряда ферментативных процессов. Несмотря на большие различия в химическом механизме катализируемых реакций (гидролиз, элиминирование или присоединение воды, окислительно-восстановительные процессы), наблюдаемые константы скорости обнаруживают удивительное однообразие, приближаясь для лучших (наиболее реакционных) субстратов того или другого фермента к одному и тому же пределу порядка 10 —10 Это наво ит на мысль, что скоростьлимитирующая стадия всех этих разнообразных химических механизмов одна и та же. [c.269]

    Типичное применение теории химической абсорбции основано на использовании данных о скорости массопередачн для оценки констант скорости довольно быстрых реакций. Это представляет особый интерес в катализируемых реакциях. Случаи такого типа могут быть найдены в серии статей Данквертса с сотрудниками [9—11] по каталитическому действию различных веществ на реакцию двуокиси углерода с водой. Скорость последней может увеличиваться иод действием катализаторов, так что реакция становится конкурентной с прямой реакцией между СО2 и ОН даже при довольно высоких значениях pH, таких, например, какие наблюдаются в буферных растворах. Джеффрейс и Буль [12] пришли к такому же заключению. В случае карбонизированных растворов амина величина pH настолько мала, что даже в отсутствие катализаторов реакция двуокиси углерода с водой значима (см. раздел 14.1). Неудивительно, что в этой реакции катализатор увеличивает скорость на порядки, как показано Астарита, Марруччи и Джойя [13], [c.164]

    Механизм катализируемой реакции уретанообразования очень сложен, еще недостаточно изучен и, вероятно, протекает через [c.527]

    В водном растворе остается практически постоянной в ходе реакции. Эта реакция катализуется кислотами. Она была изучена в самом конце прошлого века Оствальдом, который обнаружил, что константа скорости данной реакции возрастает почти в 300 раз под влиянием НС1 другие кислоты приводят к возрастанию ее скорости в число раз, указанное в табл. 22-3. Нетрудно заметить корреляцию между возрастанием константы скорости и константой диссоциации кислоты. Теперь понятно, что эффективность действия кислоты как катализатора (обнаруживаемая по изменению константы скорости) обусловлена концентрацией ионов Н , образуемых кислотой (эта концентрация определяется константой диссоциации кислоты). Все полностью диссоциирующие сильные кислоты обусловливают приблизительно одинаковое возрастание константы скорости катализируемой реакции. [c.391]

    Факт многофазности катализатора в условиях воздействия среды на катализатор был экспериментально доказан в работе [107 ] на примере окисления углеводородов на окисных ванадиевых катализаторах. Так же можно трактовать и данные исследований Тарама и сотрудников [106 ]. Многофазность окисных медных катализаторов в условиях протекания реакции окисления олефинов была показана Поповой [108]. Соотношение между фазами окисных катализаторов определяется стационарными условиями скорости окисления и вос-становления катализатора, причем сами по себе эти процессы могут быть и не связаны непосредственно с катализируемой реакцией. Поэтому вопрос о фазовом составе катализатора совсем не следует ставить в зависимость от механизма основной катализируемой реакции. [c.51]

    Частичная или полная дезактивация металлической функции алюмоплатинового катализатора в реакции гидрогенолиза ведет к значительному повышению роли кислотно-катализируемой реакции раскрытия пятичленного кольца. Так, авторы [46] для снижения активности платины в гидрогенолизе обрабатывали алюмоплатиновый катализатор (0,65% Р1/т1-Л120з + 0,75% С1) водородом при 482 С в течение 68 ч. После такой обработки скорость кислотно-ка-тализируемой. реакции раскрытия кольца оиетилциклопентана в 11—13 раз превышала скорость гидрогенолиза углеводорода на платине. Были получены также данные, подтверждающие, что скорость реакции раскрытия кольца метилциклопентана на таких частично дезактивированных алюмоплатиновых катализаторах соизмеримы со скоростями той же реакции на кислотных носителях для этих катализаторов [34]. . [c.26]

    Содержание хлора в катализаторе можно регулировать непосредственно в условиях его эксплуатации, изменяя подачу хлорорганического соединен зЬну катализа (см., гл,, 9), Тер., амым можно ослаблять или усиливать кислотную функцию катализатора и таким образом воздействовать на скорости кислотно-катализируемых реакций дегидроциклизации и гидрокрекинга парафинов, а также дегидроизомеризации пятнчленных нафтенов (см. гл. 1). Лишь при оптимальном содержании хлора в применяемом катализаторе можно достигнуть наиболее выгодного соотношения скоростей разных кислотно-катализируемых реакций. Таким образом, регулирование содержания хлора в катализаторе во время его эксплуатации служит технологическим приемом, использование которого, наряду с обычными параметрами фоцесса, делает возможным получение высоких выходов высокооктанового бензина и ароматических уг леводородов. Иллюстрацией могут служить данные, полученные при риформинге фракции 85—180 °С на полиметаллическом катализаторе КР-108 с разным содержанием хлора [278]. Увеличение массового содержания хлора в катализаторе от 0,25 до 0,96% приводит к значительному увеличению выхода ароматических углеводородов особенно при низт ких температурах процесса, например при 470 °С (табл. 5.6). Увеличение их выхода происходит главным образом за счет дегидроциклизации парафинов. [c.154]

    По схеме А предусматривается сухое формование материала методом таблетирования, грануляции на таредьчатом грануляторе, дробления (см. ниже). Таблетирование и грануляция требуют измельчения прокаленного катализатора до тонкодисперсного состояния [9, 38]. При плохой грануляции к порошку добавляют связующие материалы, которые должны быть инертными по отношению к катализируемой реакции и стабильными в условиях процесса [3]. [c.105]

    И. Берцелиус, а затем почти век спустя В. Оствальд и их сторонники считали, что катализатор не принимает участия в катализируемой реакции. И. Берцелиус приписывал катализ проявлению непонятной и непостижимой vis o ulta (таинственной силы), а [c.23]

    При катализе ферментами химической реакции может реализоваться любой из вышеприведенных механизмов катализа. Например, имидазольное кольцо остатка гистидина в ферменте а-химотрипсии (разд. 4.4) способно играть роль обгдеосновного катализатора, тогда как в ферменте щелочная фосфатаза тот л<е остаток может действовать в качестве нуклеофильного катализатора. Действительно, ферменты — это сложные катализаторы, в ходе действия которых реализуется несколько механизмов. Именно благодаря успешному сочетанию разных каталитических процессов скорость катализируемой реакции повышается в Ю раз (по сравнению со скоростью некатализируемой реакции). Более того, именно такая комбинация факторов приводит к специфическому катализу. [c.195]

    В вышеупомянутом методе для регенерации NADH из NAD+ используется дитионит натрия. Показано, что он вполне пригоден для препаративного проведения (с высокими выходами) HLADH-катализируемых реакций восстановления большого набора альдегидов и кетонов. [c.407]

    Другой основной принцип мультиплетной теории — энергетическое соответствие, согласно которому для успешного протекания ...эндотермической реакции нужно, чтобы адсорбционный потенциал катализатора по возможности ближе подходил к половине энергии реагирующих связей — среднему из энергий разрываемых и вновь возникающих связей . В оптимальном случае ...энергетический барьер равен половине теплового эффекта катализируемой реакции . Увеличение адсорбционного потенциала улучшает условия образования мультиплетного комплекса, но затрудняет его распад в таком случае может произойти отравление катализатора продуктами реакции. Уменьшение адсорбционного потенциала улучшает условия распада мультиплетного комплекса, но ухудшает условия его образования — катализатор голодает из-за недостаточной адсорбции исходных веществ. Наибольшая активность твердого катализатора достигается при определенной энергии мультиплетного комплекса, соответствующей равенству поверхностных активностей исходных веществ и продуктов реакции по отношению к данному катализатору. [c.174]

    Недавно для многих из катализаторов, способных вызывать осцилляции в скорости катализируемых реакций, зарегистрированы также поверхностные химические волны, т.е. организованное движение участков поверхности, заполненных молекулами разных ад-сорбатов. Химические волны являются примером возникновения на поверхности катализаторов пространственно-временных диссипативных структур и наблюдаются как на мезоскопическом (т.е. полумакроскопическом с характерными размерами в несколько микрон — рис. 18.14, 18.15), так и на атомно-молекулярном с характерными размерами в десятки ангстрем (рис. 18.16) уровнях. [c.392]

    Образующийся ион Br реагирует с другой молекулой Н2О2 и т. д. Суммарное уравнение катализируемой реакции [c.83]

    Для понимания механизма катализа химотрипсином важно знать внутреннюю (собственную) реакционную способность ферментных нуклеофилов, которые действуют на отдельных стадиях катализируемой реакции. Для этой цели проанализируем взаимосвязь структуры и реакционной способности субстратов в химотрипсиновом катализе на примере гидролиза метиловых эфиров а-Ы-ацилзамещенных-Ь-ами-нокислот. [c.158]


Смотреть страницы где упоминается термин Катализируемые реакции: [c.468]    [c.72]    [c.160]    [c.13]    [c.55]    [c.85]    [c.34]    [c.58]    [c.386]    [c.43]    [c.160]   
Смотреть главы в:

Механизмы химических реакций -> Катализируемые реакции

Реакция Дильса-Альдера -> Катализируемые реакции

Механизм окисления органических соединений -> Катализируемые реакции




ПОИСК







© 2025 chem21.info Реклама на сайте