Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление конечное в баллонах

    Ацетилен, отбираемый из баллонов с растворенным газом, содержит пары ацетона, количество которых зависит от температуры и давления в баллоне. Содержание ацетона в ацетилене, отбираемом под давлением 1 ат из баллона с начальным давлением Р1 до конечного давления Р2, можно в первом приближении рассчитать исходя из следующих допущений  [c.314]

    Более широкое" распространение водород-кислородных элементов потребует, конечно, соответствующего решения проблемы хранения и перевозки водорода. Сейчас он хранится и транспортируется под высоким давлением в стальных баллонах. сЗднако эти баллоны очень тяжелы, неудобны при перевозках — это мешает использованию водород-кислородных элементов в качестве источников питания для транспортных средств. [c.244]


    При наполнении баллона газом последний нагревается. В силу этого необходимо накачивать газ в баллон до давления, несколько превышающего конечное, с тем расчетом, что когда система остынет, давление в баллоне снизится до требуемой величины. В летнее время баллоны должны наполняться до более высокого давления, чем зимой. [c.16]

    Редукторы. Давление газов в баллонах, поступающих в химические лаборатории, бывает различное (см. Приложение XV). Давление в хлорных баллонах при 20°С 30 ат, кислородных — 150 ат, ацетиленовых — 16 ат и т. д. Конечно, применять в работе газ, выходящий из баллона под таким давлением, не всегда удобно и нужно большей частью его необходимо снизить до 2—3 ат. Для этой цели предназначены редукционные вентили или редукторы (рис. 30). В зависимости от назначения редукторы бывают различных конструкций, отличающиеся пропускной способностью, величиной допускаемого ими рабочего давления, принципом действия и, наконец, материалом, из которого они изготов- [c.248]

    Для наполнения баллонов до рабочего давления 150 и 200 ат применяют обычно трехцилиндровые компрессоры, рассчитанные на конечное давление 165 и 220 ат. [c.125]

    При недостаточном объеме переходных пор и макропор пористой массы часть раствора ацетилена в ацетоне в процессе наполнения может стечь на дно еще до насыщения ацетиленом при конечном давлении. Были проведены опыты по определению давления в баллонах при вертикальном и горизонтальном хранении их. Баллоны емкостью 40 л с зернистой пористой массой были заполнены 10,5 кг ацетона и 6,5 кг ацетилена (менее 5%-ного [c.174]

    На одном предприятии в течение одного года произошло четыре случая разрыва наполненных аммиачных баллонов. Комиссией, расследовавшей эти аварии, было установлено, что разорвавшиеся баллоны имели дефекты изготовления, ослабляющие стенку баллона, с характерным расслоением металла в продольном сечении баллона. Однако обследование работы участка наполнения аммиачных баллонов выявило ряд недостатков в порядке хранения - наполнения баллонов. В частности, не производился замер конечной массы аммиака в баллоне и не заполнялась соответствующая графа в журнале. Между тем, при заполнении сжиженным аммиаком всего объема сосуда давление в нем при повышении температуры от О до 30 °С может достигать высоких значений (до 42,0 МПа). Поэтому не исключено, что причиной, ускорившей разрушение, явилось переполнение баллонов жидким аммиаком. [c.282]

    Среднее содержание паров ацетона (объемн.%от количества ацетилена , отобранного при 1 ат) при конечном давлении в баллоне Ря, ат [c.315]

    Теоретические расчеты возможных давлений в баллоне, переполненном сжиженным газом, при различных температурах не учитывают пластических свойств материала баллона. На основе этих расчетов нельзя судить о скорости подъема давлений в баллоне и конечных давлениях разрыва баллона. [c.37]


    Влияние отношения давлений. Изменение отношения давлений газа в ступени П чаще всего происходит либо при постоянном начальном давлении р и переменном конечном р , либо при постоянном конечном и переменном начальном. Изменение конечного и начального давления одновременно встречается у промежуточных ступеней многоступенчатой машины. Например, при постоянном Рн и переменном р работает компрессор при закачке газа в баллоны. [c.73]

    Компрессор, предназначенный для наполнения баллонов, систематически работает в режиме нарастания конечного давления. На рис. П1.7 представлены кривые нарастания давлений по ступеням четырехступенчатого компрессора такого назначения. [c.78]

    В баллоне вместимостью 100 л находится воздух под давлением р1 = 5-10 Па при 1 = 20°С. Определить работу, которая может быть получена при расширении воздуха до давления окружающей среды р2 = 0,1-10 Па по изотерме и по адиабате. Вычислить конечные объемы воздуха ( 2) при изотермическом и адиабатическом процессах .  [c.41]

    В установку напускали метан и измеряли его начальное давление р . Затем один из баллонов погружали в жидкий азот, метан в нем конденсировался. После конденсации метан фильтровали через порошок, затем измеряли перепад давления на слое порошка. По окончании опыта метан размораживали и измеряли его давление рк. Зная время фильтрации, начальное и конечное давление метана в известном объеме V, легко определить 5д [5, 7]. [c.119]

    Меры профилактики. При хранении К. в баллонах под давлением необходимо соблюдать меры предосторожности, регламентируемые правилами работы с газовыми баллонами, сжатыми газами и воздухом. Утечка находящегося под давлением К. или избыток его в атмосфере могут привести к спонтанному разогреванию и в конечном итоге к возгоранию органических материалов (например, угля, промасленной ветоши). Работающие могут допускаться в зону (помещение) с пониженным содержанием К. в воздухе только при условии подстраховки и постоянного контроля со стороны напарника, находящегося в атмосфере с нормальным содержанием К. [c.456]

    При разделении веществ с близкими свойствами, когда используются мелкозернистые иониты, необходимо вести процесс под давлением. Устройство, пригодное для выполнения большинства разделений этого типа, показано на рис. 9. 1, г. Сосуды, заполненные водой, соединены резиновой трубкой, что позволяет поддерживать нужное давление в системе и в случае необходимости изменять его в процессе анализа. Если все операции выполняются под давлением, то, конечно, нет необходимости в том, чтобы выходная трубка заканчивалась выше верхней границы слоя ионита. В процессах, требующих более высокого давления, можно применять азот в баллонах. Для поддержания постоянного давления воздуха над поверхностью жидкости можно использовать ртутный барботер [72 ]. Необходимо, однаки, помнить о том, что при продолжительных разделениях возможно выделение пузырьков газа, так как во время прохождения через колонку давление падает. Для таких разделений вместо давления газа лучше применять гидростатическое давление или насос [132]. [c.190]

    Система, принятая в конечном итоге, показана в виде схемы на рис. 3. Водород из баллона доводится до постоянного давления (0,35—0,7 кг см ) через клапаны с диаграммами. За ними следуют постоянные сопротивления, которые представляют собой просто медную трубку длиной 60 см, диаметром Ь мм, заполненную 40% жидкого парафина (на неотсортированном целите). Водород затем прямо пропускается в горелку. Поток азота регулируется второй системой клапанов и пропускается для измерения скорости через [c.160]

    При наполнении, например, третьей партии малолитражных баллонов конечное давление было 147,3 ати. Такие баллоны требуют подкачки их до 150 ати с помощью компрессора. Для этих целей кислород перекачивается из большого кислородного баллона с [c.114]

    Дело было так. В начале прошлого века, когда в городах Англии ввели газовое освещение, светильный газ изготовляли с помощью разложения при сильном нагревании (пиролиза) китового жира и поставляли потребителям в медных баллонах под давлением 32 атмосферы. Конечно, при пиролизе обычно образуются сложнейшие смеси веществ — пример тому уже упомянутая каменноугольная смола. Однако химическая сторона дела, казалось бы, не должна была особенно занимать производителей газа — лишь бы эти попутные вещества тоже горели. Тем не менее уже на этом скромном уровне развития промышленности оказалось, что в отрыве от науки ей не жить. Поскольку поставщики газа стремились повысить световую силу , приходящуюся на один баллон, им все-таки приходилось думать и о таком академическом вопросе, как природа горючих веществ. Поэтому когда они обнаружили, что в баках, из которых разливался газ по баллонам, остается какая-то маслянистая жидкость, возникла идея а нельзя ли и эту жидкость сжигать в фонарях Тогда и компрессоров не надо, и световой силы много. [c.45]

    Конечно, каждый раз получать ацетилен на месте сварки очень неудобно. Установки для получения ацетилена остались сейчас только в стационарных сварочных мастерских. Чаще пользуются ацетиленом из стальных баллонов, где его хранят под давлением. Заполнять пустые баллоны газом и транспортировать их очень опасно. При давлении 45 аг ацетилен становится жидким. В этом состоянии он может взрываться без всякой видимой причины. Работать с жидким ацетиленом в стальных баллонах сложно. Для безопасности ацетилен под небольшим давлением нагнетают в стальной баллон, заполненный ацетоном. При давлении приблизительно 12 аг ацетон поглощает 300-кратное количество газа. Если открыть вентиль, ацетилен освобождается подобно тому, как, вспенивая жидкость, выходит наружу избыточный углекислый газ из только что откупоренной бутылки лимонада. [c.43]


    Жителям сельской местноста хорошо знакомы красные баллоны с газом, которые используются там, где нет магистральных газопроводов. Такие же баллоны, только маленькие, возят с собой туристы, пользующиеся портатавными газовыми плитками. Какой же газ находится в этих баллонах-может быть, тоже метан Если покачать такой баллон, то легко почувствовать, что внутри плещется жидкость. Значит, газ в баллоне находится в сжиженном состоянии, и он никак не может быть метаном ведь у метана критическая температура равна — 82,3 °С, а выше этой температуры газ невозможно превратить в жидкость ни при каком давлении. Поэтому такие баллоны заполняют пропаном (или смесью пропана с бутаном). У пропана критическая температура равна 96,8 °С, у бутана-еще вьппе (152°С). Но ведь метан дешевле-почему же его не закачивают в баллоны под давлением, а заполняют их сжиженным газом В принципе в баллоны можно, конечно, закачать и метан. Но посмотрим, что выгоднее. [c.142]

    Во избежании опасности конденсации ацетилена конечное давление при наполнении баллонов должно определяться температурой окружающего воздуха в соответствии с данными табл. 11.4. [c.179]

    Охлаждение баллонов водой дает возможность значительно уменьшить продолжительность наполнения. Это объясняется в основном очень низким коэффициентом теплоотдачи от охлаждаемой поверхности к воздуху (поэтому требуемая поверхность охлаждения превышает в несколько десятков раз поверхность, необходимую нри водяном охлаждении), а также малой теплоемкостью воздуха. В зимнее время температура водопроводной воды составляет 5—10 °С. В отдельных случаях целесообразно устройство артезианского колодца, вода из которого в течение всего года имеет температуру примерно 10 °С. При необходимости воду можно также охлаждать в холодильной установке. При применении зернистых масс при конечных давлениях 2,1 и 2,5 МПа (21 или 25 кгс/см ) продолжительность наполнения составляет соответственно 6—12 и 3—6 ч. [c.180]

    При одинаковом числе баллонов на рампе, неизменной производительности компрессоров и охлаждении водой баллоны можно наполнять ацетиленом до более низкого конечного давления, что имеет важное преимущество в отношении техники безопасности. [c.180]

    Анализ углекислого газа производится следующим образом. К стоящему баллону плотно привинчивается соединительная часть с прокладкой и шлангом. Открыв вентиль баллона, регулируют его до тех пор, пока не получат равномерную, не слишком сильную струю газа. Тогда присоединяют шланг к крану а, который так установлен, что углекислый газ войдет-в А и выйдет через >, вытесняя воздух. Через минуту трубка А наполнена углекислым газом. Можно выпускать газ до тех пор, пока в верхней суживающейся части трубки А не будут видны игольчатые кристаллы двууглекислого кали. Тогда b закрывают и, уравняв с воздухом давление путем снятия шланга, поворачивают а на 90 , так чтобы А и В друг с другом сообщались. Раствор едкого кали сразу поднимается в А , понемногу поворачивая бюретку горизонтально, получают более быструю абсорбцию в А без образования вакуума. Под конец трубку передвигают вверх и вниз, затем закрепляют ее и переходят к отсчету. Для этого поднимают бутыль D и уравнивают поверхность жидкости в ней с поверхностью в А. Конечно можно раз навсегда сделать себе корректировочную таблицу и тогда просто производить отсчет, не передвигая каждый раз бутыль D. Две следующие одна за другой пробы не должны давать разницы больше 0,0о0/о объема. Так как верхняя часть трубки Л и-меет деления на 0,05 мл, то можно определять на глаз с точностью до 0,01 мл и с этой точностью отсчитывать проценты объема воздуха. [c.416]

    Перечисленные параметры в конечном итоге предопределяют количество насосов, устанавливаемых в насосно-аккумуляторной станции количество и общую емкость гидравлических и воздушных баллонов с обеспечением допустимого перепада давления в системе аккумулятор — потребитель диаметры условных проходов гидравлической аппаратуры и трубопроводов. [c.223]

    Давления в стандартном 40-литровом баллоне диаметром 219 и в баллоне БАС-2 в зависимости от времени наполнения показаны на рис. 3.10. На рисунке также проведена горизонталь (24 ат), соответствующая конечному давлению однократного наполнения. Точки пересечения горизонтали с кривыми давления в баллонах определяют их газовбираемость при однократном наполнении. Наполнение стандартного 40-литрового до избыточного давления 22 ат продолжается 4,9 ч. За это время в баллон вводится 3,53 кг газа, концентрация ацетилена в ацетоне в конце наполнения составляет 0,575 кг/кг. В баллон БАС-2 при таком же конечном давлении на рампе можно ввести 4,75 кг ацетилена (время наполнения 4,5 ч), что соответствует концентрации ацетилена в растворе 0,535 кг на 1 кг ацетона. После отстоя баллоны принимают температуру 15° С и давление в них снижается до [c.154]

    При накачивании компрессором в баллон кислорода он частично нагревается за счет выделения теплоты сжатия. Поэтому приходится наполнять баллоны до давления несколько большего чем 150 ати с тем, чтобы при остывании баллона до температуры окружающей среды [давление в нем снизилось до нормальной вели--чины, соответствующей этой температуре. Как видно мз выщепрл-веденной формулы, давление газа в баллоне долж)Ио быть тем выше, чем выше температура окружающей среды. Поэтому летом баллоны должны накачиваться до более высокого, а 31Имоп — до более низкого давления. Принятая величина (нормального рабочего давления в баллоне, рашая 150 ати, относится к температуре 20°Ц. Конечное давление в баллоне при какой-то другой температуре определяется из формулы  [c.233]

    Для точного учета количества полученного кислорода по баллонам необходимо знать емкость каждого баллона, давление газа в нем и температуру окружающей среды. Зная эти величины, можно по приведенной ранее формуле подсчитать количество газа в баллоне и привести его к 1 ата и 20° Ц. Для получения общего количества выработанного газа результаты подсчетов по каждому баллону складываются. Однако такой способ отнимает много времени и требует достаточно точного измерения давления в баллоне, что в производственных условиях не всегда возможно осуществить. Поэтому часто количество выработанного кислорода определяют ориентировочно, для чего берут средние давления и емкости баллонов и умножают полученный результат для одного баллона на количество наполненных баллонов. Иногда считают условно емкость каждого баллона в 6 ж кислорода и умножают эту величину на число наполненных баллонов. Конечно, при этом способе ошибка в определении производительности кислородной установки может достигать значительной 1величины. [c.270]

    Квазистационарным методом определялась удельная поверхность различных порошков. Для сравнения удельная поверхность некоторых порошков определялась методом низкотемпературной адсорбцией аргона на приборе Агеа гоп и при стационарной фильтрации разреженного газа. Для осуществления стационарного режима фильтрации на том же приборе использовался метан и его свойство иметь давление насыщенного пара 10 мм рт. ст. при температуре кипения жидкого азота. В этом случае опыты проводились следующим образом. Метан напускался в установку и измерялось его начальное давление Ро- Затем один из баллонов погружался в сосуд дьюара с жидким азотом и метан конденсировался в нем. После конденсации метан фильтровался через порошок и измерялся перепад давления на слое порошка. По окончании опыта метан размораживался и измерялось его давление. Зная время фильтрации, начальное и конечное давления метана в известном объеме V, легко определить 5 [77]. [c.95]

    Таким образом, ступенчатым, перепуском кислорода конечное давление после наполнения первой партии малолитражных баллонов оказывается близким к 150 эти и практически не требует докачки. [c.114]

    Положительна, отрицательна или равна нулю величина Д5 для процесса расширения идеального газа из баллона, где он находится под высоким давлением (230 атм), в вакуумированный сосуд Вычислите и г7обр при условии, что конечное давление равно 1,00 атм. [c.318]

    Даже в жаркий день прикосновение к металлу, находящемуся в помещении или в тени, создает впечатление, будто их поверхность холоднее воздуха. Если взять в руки кусочек пенополистирола с гладкой поверхностью (белого пористого материала, знакомого нам как упаковочная обкладка в ящиках с телевизорами и радиоприемниками), то в местах контакта с пальцами почти немедленно возникает ощущение тепла материал кажется теплее окружающего воздуха. Конечно, дело обстоит иначе. И поверхность стали, и поверхность вспененного полимера имеют ту же температуру, что и окружающий воздух. Но техшопроводность металла очень высока, и тепло на-пшх пальцев быстро переносится в глубь металла, пальцы охлаждаются . Воздух, заполняющий пустоты в пеностироле, плохой проводник тепла, поэтому полимер теплый . Теплопроводность воздуха снижается по мере уменьшения его содержания в единице объема, т. е. при понижении давления. На этом основано действие термоса, главной частью которого является двухстенный стеклянный баллон с зеркальной поверхностью и вакуумом между стенками. Если бы удалось создать вспененный полимерный материал с вакуумом внутри газовых пузырьков, то он вполне смог бы заменить хрупкий стеклянный баллон. Эта техническая задача достаточно сложна и ждет еще своего решения. Но уже сейчас научились заполнять пузырьки газом, теплопроводность которого ниже, чем у воздуха. Из такой твердой пены делают сумки-холодильники. [c.184]

    Рк — конечное давление воздуха в пусковых баллонах в кПсм"  [c.300]

    С повышением содержания воздуха или азота в ацетилене газовбираемость баллонов снижается. Для обеспечения заданной газовбираемости при повышенном содержании воздуха или азота необходимо повысить конечное давление наполнения. Поскольку загрузочные бункера генераторов продувают азотом для удаления воздуха, можно без существенной погрешности принять, что ацетилен содержит не воздух, а азот. [c.175]

    Так как давление над ртутью в капилляре 9 имеет порядок 0,001 мм Hg, то им можно пренебречь по сравнению с давлением в запаянном капилляре, и разность уровней ртути в обоих капиллярах будет численно равна давлению (в мм Hg) газа, заклю- ченного в капилляре 2. Зная объем на единицу длины канилля-ра ) 2, можно вычислить конечный объем Fg. Начальный объем газа Fx определяется измерением баллона при изготовлении манометра следовательно, известны все величины, необходимые для определения начального давления по закону Бойля. [c.115]

    В трубках конденсатора 16 сжижаются пары азота, поднимающиеся из нижней колонны И. Часть образующейся при этом жидкости, богатой азотом, стекает вниз по насадке колонны, вследствие чего происходит первичная ректификация воздуха. Другая часть жидкого азота собирается в карманах 13 конденсатора, дросселируется вентилем Р-4 до избыточного давления 0,5—0,6 кгс1см и подается на орошение верхней тарелки колонны 18. Жидкий кислород из кармана 17 проходит через переохладитель 15 и поступает в насос 4, который подает его в трубки 2 теплообменника 1. Кислородные трубки 2 расположены внутри нескольких воздущных трубок теплообменника. Здесь жидкий кислород испаряется за счет тепла поступающего сжатого воздуха и в виде газа под давлением, постепенно повышающимся до конечного избыточного давления 150—165 кгс/см , поступает в баллоны. Фильтр 3 служит для очистки сжатого кислорода от механических примесей, которые могут попасть в него вследствие истирания графитового уплотнения поршня насоса. [c.163]


Смотреть страницы где упоминается термин Давление конечное в баллонах: [c.317]    [c.335]    [c.176]    [c.131]    [c.75]    [c.24]    [c.118]    [c.280]    [c.316]    [c.330]    [c.52]    [c.145]    [c.6]    [c.105]    [c.171]   
Справочник по разделению газовых смесей методом глубокого охлаждения (1963) -- [ c.473 ]

Справочник по разделению газовых смесей (1953) -- [ c.361 ]




ПОИСК





Смотрите так же термины и статьи:

Баллонный газ

Баллоны



© 2025 chem21.info Реклама на сайте