Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие методы получения низких температур

    На таких диаграммах можно легко проследить ход тех изменений, которым подвергается вещество (испарение, конденсация, сжатие, расширение, охлаждение, изменения адиабатические, изотермические, изоэнтальпные и другие). Для любой точки линии изменения можно быстро найти на диаграмме параметры, характеризующие состояние вещества (энтропию, энтальпию, давление, объем, температуру). В работе, связанной с развитием технологического метода, когда обязателен, например, выбор оптимального варианта процесса, проходящего при рассмотренных нами изменениях системы, энтропийные диаграммы незаменимы. Кроме того, следует помнить, что, особенно в областях низких температур и высоких давлений, поведение реальных газов резко отличается от поведения идеального газа, и расчеты по рассмотренным выше уравнениям требуют внесения поправок, трудно поддающихся вычислению, а иногда и не очень точных. Проведение расчетов с использованием энтропийных диаграмм, составленных по экспериментальным данным, обеспечивает получение значительно более точных результатов в короткое время. [c.142]


    Методом электрического распыления (эле ктро-диспергирования) пользуются для распыления различных металлов. Он основан иа том, что между двумя электродами, изготовленными в виде проволочек из данного металла и погруженными в воду, возбуждают электрическую дугу. При этом материал электродов распыляется в окружающую среду. Для получения устойчивого золя к воде предварительно добавляют немного щелочи. Металл переходит в парообразное состояние и, попадая в дисперсионную среду, благодаря низкой температуре конденсируется, образуя золь. Этим методом получают гидрозоли золота, серебра, платины и других металлов. [c.74]

    Другой путь производства циклогексана [2] состоит в использовании бензола, предварительно очищенного известными методами от большей части сернистых примесей (сернокислотная мойка, гидроочистка и т. п.), с дальнейшим гидрированием такого бензола при низких температурах на никелевых катализаторах. При этом получается чистый циклогексан, который может направляться непосредственно из колонны гидрирования на дальнейшую переработку. Преимуществами этого метода являются низкие температуры (100—250°) и давления (1—50 ат), более дешевый катализатор, высокая производительность, получение чистого продукта без применения ректификации и т. п. [c.391]

    I Другие, методы получения низких температур 653 [c.653]

    Другие методы, приводимые ниже, хотя и не нашли пока промышленного применения (или имеют весьма ограниченное применение), но представляют интерес как возможные физические методы получения низких температур. [c.653]

    Метод, повидимому, не имеет тех принципиальных ограничений, которые характеризуют другие способы получения низких температур. [c.462]

    В основу своего метода получения жидкого воздуха Ж. Клод положил другой способ получения низких температур, а именно, он использовал явление охлаждения газов при их расширении в цилиндре поршневого двигателя с одновременной отдачей внешней работы. [c.64]

    Настоящую пропись получения ацетон-анила предложил Ред-делин. О возможности проведения реакции при более низкой температуре сообщил Крэг -, который описал также щелочное раз-.южение анила с образованием 2,4-диметилхинолина и метана этот же исследователь разработал способ очистки конечного препарата. Среди других методов получения 2,4-диметилхинолина следует указать на синтез Бейера (исходные реагенты хлористоводородный анилин и этилиденацетон), на модификацию этого синтеза , а также на синтез, который разработал Комб (исходные реагенты ацетилацетон и анилин). [c.196]


    Наложение пленки. Другой метод получения специальной поверхности листа заключается в наложении тонкой пленки того же материала на горячий лист непосредственно в приемном устройстве (фиг. 4.9). Перед тем как нанести пленку на лист, ее подогревают, пропуская по одному из валков. При этом нет необходимости в приклейке этой пленки. Для пленки из полистирола, ориентированного в двух взаимно перпендикулярных направлениях, очень важен правильный выбор температуры предварительного нагрева, так как чрезвычайно высокая температура вызывает усадку и коробление пленки, а при низкой температуре она плохо прилипает к поверхности листа. Для покрытия широко применяется пленка из полистирола. Эта пленка должна быть обязательно ориентированной, так как только при этом возможны обработка и печатание на ней без повреждений. Может применяться и неориентированная пленка, и на ней можно печатать, однако обращаться с ней следует очень осторожно. [c.97]

    Другим методом получения гексахлорана является каталитический. В качестве, катализатора применяют перекиси, основания (щелочи, гидроокиси кальция) или другие вещества. Процесс протекает при низких температурах и без освещения. [c.226]

    Однако ранее был предложен метод получения более низких температур. В 1926 г. Джиок [2] и Дебай [3] независимо друг от друга показали, что у парамагнитных веществ при достаточно низких температурах величина магнитокалорического эффекта должна быть большой и что этот эффект, по-видимому, можно использовать для получения низких температур. В первых экспериментах [c.118]

    Асфальты, получаемые из крекинг-остатков [114] (остатки термического крекинга), иногда могут быть представлены как асфальты другого типа. Они напоминают каменноугольные смолы, хотя по характеру являются более ароматическими, дают большое изменение консистенции с температурой и быстро окисляются при выветривании. Как докладывалось, они дают хорошо формующиеся частицы и являются эффективными для дорожных покрытий. Это частично обусловлено низкой вязкостью при плавлении, что делает возможным хорошее распространение. Сырье, из которого они были получены, исчезает, так как объем термического крекирования резко сокращается. Очень важен метод получения асфальтов, но особенно важен тип нефти как определяющий конечные свойства. Из типичных нефтей получаются продукты со следующими свойствами  [c.552]

    Как показано в предыдущих главах, при помощи комплексообразования с карбамидом удается осуществлять не только разделение на группы углеводородов нормального строения и углеводородов изо- и циклического строения, но и выделять индивидуальные к-парафины. В последнем случае требуется сочетать по крайней мере два процесса — образование карбамидного комплекса для отделения к-парафинов от других соединений и четкую ректификацию, позволяющую выделить индивидуальные к-парафины из их смеси. Весьма заманчива разработка таких методов выделения индивидуальных к-парафинов (или получения узких фракций, концентратов), в которых способность карбамида образовывать комплексы с к-иарафинами использовалась бы не только для отделения к-иарафинов от соединений других классов, но и для непосредственного фракционирования их. Более простой задачей, имеющей уже сегодня практическое значение, является получение непосредственно на установках карбамидной депарафинизации дизельного топлива не мягкого парафина, представляющего собой смесь к-парафинов, выкипающую в пределах выкипания дизельного топлива, а более узких фракций. В этом случае роль других процессов фракционирования, например четкой ректификации, была бы сведена к минимуму. Достоинство таких методов заключается прежде всего в возможности подвергать фракционированию как низкокипящие, так и высококипящие к-парафиновые углеводороды, а также в том, что подобное фракционирование можно вести при низких температурах и атмосферном давлении, для чего требуется относительно несложная аппаратура. [c.198]

    В недавнем обзоре [27] по окислению этилена цитируется большое число исследований хемосорбции (см. табл. 5 и 6). Почти все результаты получены методами, связанными с использованием либо очень низких давлений вплоть до вакуума, либо низких температур, или того и другого вместе, что весьма далеко от условий промышленного окисления этилена. Хотя все эти исследования внесли значительный вклад в наше понимание свойств системы серебро — кислород и ее взаимодействия с этиленом и продуктами окисления, необходимо крайне осторожно использовать полученные результаты для объяснения механизма процесса окисления, происходящего в совершенно других условиях. [c.228]

    Отделение Сз-углеводородов ректификацией от j- и С4-углеводородов происходит легко и практически не представляет никаких затруднений. Поэтому в одинаковой степени легко выделить пропан-пропиленовый концентрат из отходящих газов колонн стабилизации или из крекинг-газов, полученных любым методом. Такой концентрат пригоден для получения основного продукта химической переработки пропилена — изопропилового спирта [гидратация пропилена в изопропиловый спирт описана в гл. 8, стр. 148]. Однако для производства целого ряда других продуктов, число которых все время возрастает, требуется чистый пропилен, в связи с чем возникает задача отделения его от пропана. С помощью простой ректификации этого достигнуть нелегко, так как относительная летучесть пропилена из смесей с пропаном составляет при 3 ата и —20 всего лишь 1,15. С повышением давления это отношение несколько уменьшается чтобы избежать низких температур и использовать для конденсации газов водяное охлаждение, пропан-пропиленовую фракцию необходимо разгонять под давлением не менее 15 ата. Несмотря на все это, можно без особых затруднений осуществить в большом масштабе получение 98%-ного пропилена [13, 32]. Разделение пропилена и пропана происходит пегче, если применить азеотропную перегонку в присутствии чммиака [32] аммиак изменяет отношение давлений паров пропилена и пропана, увеличивая относительную летучесть пропана. [c.126]


    Статистическая термодинамика, возникшая на основе кинетической теории вещества, позволяет непосредственно из свойств молекул, полученных с помощью спектроскопических исследований, найти для значительного числа веществ абсолютные значения термодинамических свойств и рассчитать равновесие, не прибегая к трудоемким и дорогостоящим калориметрическим определениям при низких температурах. При этом результаты подчас более точны, чем полученные другими методами, в частности расчетом по третьему закону термодинамики. [c.496]

    В сравнении с другими восстановителями цирконий устойчив на воздухе и реагирует с солями щелочных металлов при относительно низких температурах. Методы, в которых в качестве восстановителя могут применяться 2г, Т1, и другие подобные металлы, особенно удобны для внесения КЬ и Сз в разрядные трубки. Трубки имеют практическое значение при получении небольшого количества НЬ и Сз непосредственно на производствах, использующих эти металлы [c.154]

    Другой метод получения. При гидратации Р4О10 (формы М, см. выше) при низкой температуре образуется свободная тетраметафосфорная кислота [3]. Из ее раствора, нейтрализованного едким натром, легко получить соль. [c.579]

    Для оценки удельной поверхности твердых тел используют метод физической адсорбции газов, а в случае активных компонентов на носителе - метод хемосорбции. Наиболее точными и распространенными методами физической адсорбции являются статические (объемные и весовые), базирующиеся на получении изотерм адсорбции азота и других газов при низких температурах, близких к тевшературам кипения адсо атов. Например, при измерении адсорбции азота адсорбционный сосуд охлаждают жидким азотом. [c.645]

    Ивэнс, Майтон и Флори [8] изучали температуры плавления образцов полидекаметиленадипа-та с наиболее вероятным молекулярно-весовым распределением. Некоторые характерные результаты этой работы представлены на рис. 18 в форме, соответствующей формуле (4). Видно, что это соотношение удовлетворяется вплоть до самых низких значений хп (олигомеры). Более того, величина ДЯм, вычисленная по наклону прямой на рис. 18, хорошо согласуется с ДЯм, полученными другими методами. Хотя регистрируемая температура плавления и связана с исчезновением кристаллитов, образованных молекулами с относительно большим молекулярным весом, она однозначно зависит от х . [c.44]

    Непрерывное развитие производства электровакуумных приборов, микроэлектроники, ядерной физики и многих других отраслей науки и техники требует постоянного совершенствования и разработки новых методов достижения высокого и сверхвысокого вакуума. Масляные насосы, еще недавно широко применяемые в технике получения среднего и высокого вакуума, уже не удовлетворяют современным техническим требованиям не столько по величине достигаемого предельного давления, сколько по чистоте и безмасляности вакуума. Это привело к необходимости разработки принципиально новых методов получения вакуума. Большая часть этих методов основана на использовании явления хемосорбции газов на чистых поверхностях некоторых химически активных металлов (преимущественно титана), а также физической адсорбции или конденсации газов на микропористых адсорбентах или поверхностях, охлажденных до низких температур. Адсорбционный метод получения вакуума известен еще с начала XX века, когда Дьюар с помощью древесного угля, охлажденного жидким воздухом, получил высокий (по тем временам) вакуум. Тогда из-за невысокого уровня техники получения низких температур сорбционный метод не вышел из стадии лабораторных экспериментов. [c.3]

    Фотохимическое хлорирование при низкой температуре является удобным методом получения полихлорциклогексанов. Реакцию можно проводить с применением растворителя типа четыреххлористого углерода. Как и в других случаях фотохимического хлорирования, кислород является ингибитором реакции. Свет является мощным ускорителем хлорирования, однако аскаридол может вызвать такую же реакцию и в темноте [17]. Скорость фотохимического хлорирования прямо пропорциональна интенсивности света и не зависит от концентрации хлора. Реакция протекает с квантовым выходом 19—41 моль на 1 квант в области 366—436 т/1. Наиболее эффективным, по-видимому, является свет с длиной волны 366 т/и [4]. [c.65]

    Теперь, разобравшись с механизмом алкилирования в условиях МФК, перейдем к рассмотрению механизма генерирования дигалокарбенов. Мы тщательно изучим все факты, относящиеся к генерированию дихлоркарбена, однако полученные выводы равным образом будут применимы ко всем карбенам, образующимся при межфазных реакциях. Проведение конкурентных реакций показало, что дихлоркарбен, генерируемый при МФК, идентичен дихлоркарбену, получаемому другими методами [2, 29], и не является карбеноидом. Кроме того, можно показать, что в условиях МФК карбен СХ может, обменивая галогены, превращаться в СХг и С 2. Надо добавить, что в отличие от всех других методов генерирования дигалокарбенов при МФК реакция проходит при комнатной температуре как необратимый быстрый одностадийный процесс. В то врем как смесь трег-бутилата калия с хлороформом реагирует при —20 °С независимо от присутствия или отсутствия субстрата, а Ь1СС1з распадается обратимо даже при такой низкой температуре, как —72 °С, реакционная смесь, используемая в МФК — хлороформ/конц. МаОН/катализатор, — в том случае, когда отсутствует реактант, взаимодействующий с карбеном, сохраняет свою способность давать СС12 даже при комнатной температуре в течение нескольких дней. Поскольку между хлороформом и концентрированным раствором ЫаОО/ОгО наблюдается очень, быстрый Н/О-обмен, который происходит и без всякого катализатора, то первой стадией должно быть депротонирование на границе раздела фаз. Предположительно при этом образуется двойной слой того же типа, что и обсуждавшийся выше  [c.61]

    Г о м о г е и н ы й 1П и р о л и 3, когда сырье вводят в поток. горячего топочного газа, полученного сжиганием мстапа в кислороде и имеющего температуру 2000°С. Этот метод можно комбинировать с другими процессами пиролиза, если в горячие газы первой ступени пиролиза вводить пары жидких углеводородов, для расщепления которых в ацетилен требуется более низкая температура. Возможно и совместное получение ацетилена и этилена. [c.82]

    В качестве одного из мероприятий, обеспечивающих получение низкозастывающих топлив, может быть использована глубокая депарафинизация дестиллатов, требующая применения низких температур. Однако высокая стоимость охлаждения и некоторые другие технологические трудности не могут способствовать широкому внедрению этого метода. Для получечия некоторых специальных арктических сортов топлив этот спесоб уже используется нашей промышленностью. Применительно к дизельным топливам этот способ имеет тот недостаток, что при этом происходит понижение цетанового числа топлива после его депарафинизации. [c.131]

    Несмотря на то что величина молекулярной ориентации, определенная по двулучепреломлению, сильно зависит от температуры и деформации, другие физические свойства волокна практически не зависят от этих параметров. Клеерман объясняет это следующим образом. При низких температурах деформация волокна реализуется за счет подвижности структурных элементов с малыми временами релаксации. Перегруппировка структурных элементов с большими временами релаксации (перемещение целых молекулярных цепей) требует слишком большого времени. Поэтому закаленные образцы, полученные методом низкотемпературной вытяжки, будут содержать много ориентированных сегментов, присутствие которых проявляется в значительной оптической анизотропии, но эти сегменты при отжиге быстро разориентируются под влиянием броуновского движения. Именно это демонстрируют эксперименты по исследованию скорости усадки при температурах выше температуры стеклования. [c.70]

    Если вернуться к реакции синтеза аммиака, выражаемой уравнением (1.1), следует напомнить об ее обратимости и зависимости равновесных концентраций реагентов от условий, т. е. в первую очередь от температуры (Г) и общего давления (Р). В табл. 1 приведены равновесные концентрации аммиака (в мольных процентах) для двух температур и трех давлений, полученные Ф. Габером в начале текущего века. Они показывают, что равновесная концентрация аммиака увеличивается с давлением. При повышении давления от 1 до 600 атм это увеличение характеризуется отношениями ПО (400° С) и 360 (500° С). Таким образом, синтез аммиака следует проводить при возможно более высоком давлении. Как известно, это требование соблюдается в методах синтеза, применяющихся в промышленности, где давления достигают 1000 атм. С другой стороны, повышение температуры уменьшает равновесную концентрацию (выход) аммиака. Следовательно, его синтез надлежало бы проводить при возможно более низкой температуре, у вторую рекомендацию, вытекающую из изучения тепловых явлений и термических свойств, не удается использовать в полной мере. Дело в том, что приведенные в таблице данные характеризуют равновесное, т. е. конечное, состояние реагирующей системы и ничего не говорят, за какое время это состояние может быть достигнуто. Фактор времени учитывается в другом разделе физической химии — химической кинетике. Она подсказывает, что скорость химической реакции очень быстро уменьшается с понижением температуры. Поэтому может оказаться, что при какой-то температуре хороший выход может быть достигнут за слишком продолжительное время, скажем за миллиард лет. С другой стороны, согласно данным кинетики скорость реакцин можно увеличить применением катализаторов. В итоге комплексного физико-химическоге изучения, реакцию синтеза аммиака проводят при температуре 450— —500° С на катализаторах, состоящих из металлического железа, содержащего некоторые активаторы (промоторы). [c.6]

    Смесь инертных газов, оставшихся после удаления всех других составных частей воздуха, состоит из 99,7% аргона и 0,3% остальных газов. Химически чистый аргон может быть получен фракционной адсорбцией при низких температурах (метод Валентинера и Шмидта). [c.640]

    На реакционную способность твердых веществ могут влиять поляризация частиц, присутствие посторонних веществ, всякого рода механические и другие воздействия извне. Эти факторьГв ряде случаев увеличивают активность веществ. Особенно сильно реакционная способность зависит от способа приготовления вещества. К методам получения веществ с повышенной активностью относятся осаждение из растворов, быстрое охлаждение расплавов, приготовление при относительно низких температурах и др. [36]. [c.344]

    Получение вторичного галлия. В последние годы существенным источником галлия стали отходы производства его полупроводниковых соединений, в первую очередь арсенида. Их можно перерабатывать различными путями — окислением, нитрированием, гидрированием и т. п. Для отходов нелегированного арсенида галлия рекомендован вакуумтермический метод — термическая диссоциация при 1050° и О, 01 мм рт. ст., позволяющая получить металл с содержанием мышьяка менее 10 %. Далее его очищают вышеописанными методами, например кислотной промывкой и электролитическим рафинированием. Но наиболее универсальный способ переработки отходов, по-видимому, хлорирование. Арсенид галлия, как и другие подобные соединения, легко хлорируется при низкой температуре. Хлорид галлия отделяют от более летучего хлорида мышьяка дистилляцией, после чего очищают ректификацией [1261. [c.269]


Смотреть страницы где упоминается термин Другие методы получения низких температур: [c.653]    [c.9]    [c.25]    [c.40]    [c.556]    [c.191]    [c.41]    [c.143]    [c.83]    [c.311]    [c.456]   
Смотреть главы в:

Основные процессы и аппараты химической технологии -> Другие методы получения низких температур

Основные процессы и аппараты Изд10 -> Другие методы получения низких температур

Основные процессы и аппараты химической технологии Издание 8 -> Другие методы получения низких температур




ПОИСК





Смотрите так же термины и статьи:

Другие методы

Метод при низкой температуре

Температура получение



© 2025 chem21.info Реклама на сайте