Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроны в слабом периодическом потенциале

    Потенциал ионизации атомов и сродство к электрону. Одним из важнейших свойств химического элемента, непосредственно связанного со структурой электронной оболочки, является ионизационный потенциал. Последний представляет собой энергию, необходимую для отрыва наиболее слабо связанного электрона из атома в его нормальном состоянии. Это есть потенциал ионизации первого порядка, который отвечает процессу Э = Э+- -е . Энергию ионизации можно выражать в любых единицах, имеющих размерность энергии (например, в килоджоулях), но чаще всего ее измеряют в электронвольтах. Для многоэлектронных атомов в принципе существует столько энергий ионизации , сколько электронов в атомах. От атомов химических элементов можно последовательно удалить все электроны, сообщив дискретные значения потенциалов 1, 2, Ь и т. д. При этом /]элементов первых двух периодов Периодической системы. При сравнении величин ионизационных потенциалов разных порядков для атомов одного и того же элемента обращает на себя внимание сравнительная легкость отрыва электронов наружных слоев. Так, для атома лития первый ионизационный потенциал равен 5,39 В, а потенциалы ионизации второго и третьего порядков соответственно равны 75,62 и 122,42 В. Удаление одиночного электрона наружного [c.61]


    Положительные ионы возникают в результате удаления из нейтральной частицы одного или нескольких электронов. Образование положительных ионов требует затраты энергии извне на преодоление куло-новых сил притяжения между электроном и положительным ионом. Энергия, которая необходима для этого, Ли различна для разных газов она равна произведению боб и заряда электрона на потенциал ионизации газа и для наиболее слабо связанных с молекулой электронов находится в пределах 4—25 эв . Работа ионизации у элементарных газов тем меньше, чем меньше номер их группы в периодической системе. Поэтому легко ионизируются пары щелочных металлов для ионизации инертных газов требуется большая энергия. [c.20]

    Фтор — наиболее электроотрицательный элемент (4,0 по шкале Полинга), а цезий — наименее электроотрицательный (0,7). Как видно на рис. 17-4, электроотрицательность зависит от положения элемента в периодической системе. Если рассматривать группу галогенов сверху вниз, то обнаруживается, что атомы становятся менее электроотрицательными вследствие возрастающего экранирования заряда ядра внутренними электронами. Атомы щелочных металлов легко теряют внешние электроны и поэтому обладают низкой электроотрицательностью. Кроме того, их электроотрицательность уменьшается в подгруппе сверху вниз, потому что расстояние внешнего электрона от ядра становится все больше и больше и, следовательно, электрон притягивается все слабее и слабев. Электроотрицательности можно определить из энергий связей и из суммы ионизационного потенциала и сродства к электрону. [c.523]

    Первым потенциалом ионизации называется энергия, необходимая для отрыва от изолированного атома в газообразном состоянии электрона, слабее других связанного с ядром. Второй потенциал ионизации — это энергия, необходимая для удаления второго электрона, и т. д. Энергия ионизации в периодической таблице возрастает слева направо для элементов одного периода, поскольку увеличивается заряд ядра (табл. 4). В столбце табл. 5 она уменьшается сверху вниз из-за увеличения расстояния электрона от ядра. Видно также, что энергия удаления электрона возрастает с числом отры- [c.39]

    По современным воззрениям, электронная струюура кристаллического атомного вещества представляет собой квантовую систему периодической структуры, электроны которой неразличимы и каждый из них взаимодействует сразу со всей системой в целом. Трехмерная непрерывная сеть межатомных связей в твердом теле периодического строения является системой волноводов для волн электронного газа, состоящего из валентных электронов, уровни энергии которых тесно сгруппированы в квазинепрерывные зоны. Наличие свободных, не связанных с определенными атомами, электронов, способных перемещаться по всему объему тела, определяет металлическое состояние этих веществ. Наиболее характерными представите- ями этого типа твердых веществ являются металлы. Обобществленные электроны, обеспечивающие металлическую связь в кристаллических твердых веществах, в отличие от электронов обычной ковалентной связи, существенно слабее связаны с определенным атомом. Поэтому работа выхода электрона, характеризующая прочность связи электронов со всей системой, для кристаллических атомных веществ имеет обычно малые значения. Так, для металлов значение ее лежит в пределах от 1,9 э6 для цезия, до 5,3 эб-для платины, тогда как потенциал ионизации для соединений с обычной кова- [c.109]


    Для атомов значение первого потенциала ионизации, соответствующего удалению наиболее слабо связанного электрона из атома в основном состоянии, составляют от 3,894 В для Сз до 24,587 В для Не. На рис. 12 приведена зависимость изменения потенциалов ионизации элементов от порядкового номера. Из ри сунка видно, что периодическая зависимость /=/(2) характерна зуется наличием экстремумов. Причем максимумы характернь) для атомов благородных газов, минимумы —для атомов щелоч- [c.69]

    Вместо того чтобы в отдельности рассматривать влияние размера и заряда катионов на другие их свойства, достаточно обсудить такую характеристику, как ионный потенциал (отношение заряда иона к его радиусу), понятие о котором было введено в гл. 8. Способность иона взаимодействовать со своим окружением в большой мере зависит от его ионного потенциала, так как он характеризует плотность заряда иона. Другим фактором, определяющим свойства катиона, является характер его ионного остова. Необходимо различать два типа катионов — жесткие и мягкие . Этими терминами описывают свойства электронного облака, окружающего ядро иона. Жесткие катионы обладают конфигурацией внешнего электронного слоя т.е. они изоэлектронны с атомами благородных газов. Их называют жесткими потому, что внешние полностью заполненные 5- и р-подоболочки создают вокруг ядра плотное электронное облако, слабо поляризуемое внешним электрическим полем окружающих анионов. Подобные катионы типичны для элементов главных подгрупп 1 и II групп периодической системы (щелочные и щелочноземельные металлы), а также для алюминия и переходных металлов III группы (8с, V, Ьа). К этому типу следовало бы также отнести такие ионы, как В Сг и Мп , если бы они су-н1ествовали на самом деле. Иногда жесткие катионы называют еще типическими ионами. [c.345]

    Элементы главной подгруппы П группы характеризуются низкими температурами плавления и кипения, снижаюш,имися от ципка к ртути. Среди всех мегал.дов у ртути самая низкая температура плавления и кипения — свойство, которое объясняется слабой склонностью пары валентных электронов к образованию металлических связей. Окислительный потенциал ртути отрицателен (см. стр. 229), но больше потенциала золота, поэтому и благородный характер ртути мепее выражен, чем у золота — соседа ртути по периодической системе. У цинка и кадмия, наоборот, потенциалы окисления положительны, и эти элементы проявляют большуро склонность к образованию ионов. В этом отношении цинк и кадмий в отличие от ртути имеют некоторое сходство с элементами главной подгруппы П группы, особенно с магнием (сульфаты этих элементов изоморфны). [c.695]


Смотреть страницы где упоминается термин Электроны в слабом периодическом потенциале: [c.109]   
Смотреть главы в:

Структура и симметрия кристаллов -> Электроны в слабом периодическом потенциале


Структура и симметрия кристаллов (0) -- [ c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал электронный

Слабов



© 2025 chem21.info Реклама на сайте