Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы давление пара

    Пример применения метода точек кипенпя для исследования давления насыщенных паров щелочных металлов в интервале температур 800—1600 К можно найти в [34]. В [35] обстоятельно изучены методические вопросы постановки эксперимента по методу точек кипения. [c.447]

    Обогащение нижних слоев золовых отложений щелочными металлами, кроме прямой конденсации щелочных соединений на поверхности нагрева, может также быть результатом диффузии их через наружные слои к более холодной поверхности. По данным Джексона основными диффузионными компонентами являются гидроокиси щелочных металлов, давление паров у которых выше, чем у других щелочных соединений [Л. 97]. Есть также данные, которые показывают, что диффузия щелочных соединений в золовых отложениях может протекать и в твердой фазе [Л. 108 и др.]. Какой процесс из названных имеет превалирующее значение, вероятно, зависит от конкретных внешних условий и, в частности, от интенсивностей конденсаций щелочных соединений и отложения частиц золы. [c.131]


    LiF (газ). В табл. 268 приведены результаты вычисления теплоты сублимации фтористого лития на основании измерений давления его насыщенного пара. При проведении таких расчетов необходимо учитывать сложный состав насыщенного пара. Несмотря на то, что ассоциация молекул галогенидов щелочных металлов в парах исследовалась в многочисленных работах (см. [3469, 198, 3108, 2502, 3124, 2087, 2914, 1472, 62]), эта проблема до настоящего времени не может считаться решенной. [c.886]

    Описан также способ разложения побочных продуктов в водных растворах гидроокисей щелочных металлов при этом регенерируются исходные компоненты — фенол и ацетон. Процесс осуществляется непрерывным способом. Раствор дифенилолпропана в 13%-ной щелочи пропускают через змеевиковый или другой аппарат при 250 °С и соответствующем давлении насыщенного водяного пара с такой скоростью, чтобы время пребывания раствора в нем было около 1 ч. Затем из реакционной массы отгоняют ацетон и после нейтрализации — фенол. [c.183]

    Среди всех щелочных металлов литий наиболее тугоплавкий (180,5° [2, 15]) и высококипящий (1317° [2, 3]). Давление пара на воздухе относительно невелико [10] (в мм рт. ст.) 1 (745°), 10 (890°), 100 (1084°), 200 (1156°), 400 (1236°), 760 (1417°). В вакууме (остаточное давление 0,04 мм рт. ст.) испарение начинается выше 600° [10]. [c.7]

    В качестве исходной фазы для модифицирования может быть взята любая кристаллическая фаза сложного состава, удовлетворяющая требованиям высокой технологичности (сравнительно низкая температура плавления, низкое давление пара, конгруэнтность плавления, нетоксичность, технологичность в механической обработке и т.п.). Нами была выбрана фаза со структурой шеелита СаМо04, допускающая модифицирование путём замены в Са2(Мо04)2 кальция на пару ионов щелочного металла и лантаноида. При этом количество катионов в катионной подрешётке остаётся прежним. Установлено, что чем больше радиусы замещающих катионов отличаются от радиуса катиона кальция, тем более искажается кристаллическая структура фазы по отношению к кристаллической структуре шеелита. Но при этом, в той или иной степени сохраняется мотив этой исходной кристаллической структуры. [c.137]

    Среди галогенидов щелочных металлов Rbl и sl обладают при высокой температуре наибольшим давлением пара, но их возгонка на воздухе сопровождается частичной диссоциацией — выделяется иод [10]. Rbl и sl — негигроскопичные соединения. Очень хорошо растворяются в воде. Выделяются из водных растворов в виде кубических кристаллов. Растворимость Rbl в воде (г/100 г Н2О) следующая [10] 124,8 (0°), 163 (25°), 183,4 (35,6°), 219 (59,4°), 271 (93°). Растворимость sl в воде (вес.%) [101] 27,6 (0°), 46,1 (25°), 50,82 (30°), 55,09 (40°), 58,30 (50°), 62,03 (60°), 64,95 (70°). На свету водные растворы Rbl и sl постепенно желтеют вследствие выделения иода. Под действием бромной воды, азотистой кислоты и других окислителей легко выделяется иод даже из разбавленных растворов Mel. [c.104]


    В качестве растворителя этилендиамин особенно интересен для катодного восстановления неорганических соединений. Важно то, что этилендиамин весьма схож с аммиаком. Так, например, в нем могут образовываться растворы электронов, а ртуть может служить электронным электродом. По сравнению с аммиаком этилендиамин находится в жидком состоянии в более удобной для работы области температур (11-117°С) и имеет относительно низкое давление паров при комнатной температуре (-10 мм). Несмотря на низкую диэлектрическую постоянную (12), этилендиамин растворяет с одинаковым успехом как органические, так и многие неорганические соединения, особенно перхлораты и нитраты. Подобно аммиаку, этилендиамин не совсем подходит для проведения реакции электролитического окисления, однако для восстановительных процессов он вполне пригоден. Так, в этой среде можно исследовать полярографическое восстановление ионов щелочных металлов от лития до цезия и аммония [c.24]

    Согласно [84] при низких давлениях паров щелочных металлов (р8<10 Па) коэффициент конденсации ря=1. При увеличении давления р уменьшается. По данным [85, 86], зависимость р от р может быть представлена в виде [c.189]

    В зависимости от типа исследуемого вещества схема статического метода имеет различные варианты. Например, для определения давления насыщенного пара щелочных металлов [1] применялась схема, изображенная на рис, 9.25. Исследуемое вещество подается в предварительно эвакуированный и-образный сосуд 3 из дозатора 4. в сосуде / создается давление инертного газа, заведомо превышающее давление насыщения вещества при температуре опыта. [c.447]

    Отмечается, что для щелочных металлов в пламенах водород— кислород и ацетилен—воздух вероятным устойчивым соединением является гидроксид МОН [397, 401]. Натрий не образует такого соединения. Для пламен ацетилен—воздух и пропан—-бутан—воздух рассчитаны парциальные давления паров с учетом эффективности распыления (горелка с распылительной камерой) [401]. При концентрации соли натрия 1-10 М получено Ри = 10 атм для пламени светильный газ—воздух. [c.117]

    В литературе имеются данные о растворимости в тройных системах Ме 304— Ве504 —НаО (Ме1— щелочной металл) давление пара насыщенных растворов в этих системах не изучалось. [c.6]

    Рассмотрен вопрос о химическом взаимодействии компонентов в насыщенном паре над расплавами двух- и трехкомпонентных систем, составленных из галогенвдов щелочных металлов. Насыщенный пар рассматривается как смесь следующи) молекулярных форм мономерных, димерных и комплексных (при соотношении компонентов 1 1) молекул. Учет этих молекулярных форм в паре позволяет получить соотношения, описывающие изотермы давления насьпценного пара для совершенных ионных и регулярных жидких растворов, применительно в рассматриваемым системам. Экспериментальные. изотермы, по-т лученные для систем К(С1=Вг), К(С1=1), К(Вг=1), (К = = Ка)Вги К(С1 = Вг-1), в пределах ошибки опыта совпадают с теоретически рассчитанными что является веским доводом в пользу рассматриваемых моделей пара и и расплава. Габл. 3. Ил. 2. Библ. 7. [c.198]

    Подробный обзор о лабораторной перегонке иод вакуумом металлов и сплавов, не содержащих железа, приведен в работе Шпендлеве [116]. Хорслей [117] описал аппаратуру для разгонки щелочных металлов. В соответствии с этими работами металл расплавляют в вакууме, фильтруют и затем перегоняют преимущественно ири давлении до 10" мм рт. ст. Пары металла конденсируют в конденсаторе, охлаждаемом циркулирующим маслом. Для получения чистого тантала Паркер и Вильсон [118] использовали хлорид тантала ТаС ., (температура кипения 240° С при 760 мм рт. ст.). Безобразов с сотр. [118а] разработал кварцевый аппарат диаметром 40 мм и высотой разделяющей части 1250 мм для аналитической перегонки высококипящих веществ с температурой кипения до 1000°С (сера, селен, теллур, цинк, кадмий, сульфид мышьяка и др.). [c.260]

    Хлориды рубидия и цезия достаточно термически устойчивы плавятся без разложения с незначительным улетучиванием, которое наступает несколько ниже температуры их плавления [95]. Полная картина изменения давления паров МеС1 в интервале 800—1400° представлена на рис. 16 [31]. В вакууме при 440°скорость сублимации s l значительно выше, чем Rb l, и тем более выше,чем КС1. Это может представить интерес в плане разделения трех близких по свойствам щелочных металлов в виде их хлоридов [61. [c.101]

    Дегидрирование изобутана в изобутилен. Эффективные катализаторы для превращения низших алканов в алкены — это окислы металлов VI группы, способные к активированной адсорбции водорода при повышенных температурах. На практике наибольшее распространение получили катализаторы на основе окиси хрома, нанесенной на окись алюминия. Наиболее активна аморфная форма окиси трехвалентного хромаСгаОз, содержащая некоторое количество соединений шестивалентного хрома. Роль окиси алюминия помимо основной функции носителя заключается в тормозящем действии на процесс кристаллизации окислов хрома, приводящий к потере активности катализатора. Кислотная функция окиси алюминия, наличие которой ускоряет реакции изомеризации и крекинга, подавляется добавлением небольших количеств щелочных металлов, в частности окиси калия. В некоторых случаях катализаторы дегидрирования алканов Q—Се промотируются редкоземельными элементами, например NdjOa, уменьшающих период разработки . Катализаторы на основе окиси алюминия неустойчивы к действию влаги, поэтому распространенный прием повышения степени превращения (и селективности) за счет снижения парциального давления углеводо- зодов при разбавлении сырья водяным паром в данном случае неприменим. [c.351]


    При изучении давления насыщенного водяного пара над расплавленными щелочами (КОН и NaOH) в присутствии карбонатов и хлоридов щелочных металлов получены для исходного сплава остава 93% КОН 4-7% К2СО3 следующие данные  [c.250]

    Этo уравнение позволяет найти средний коэффициент активности гидроксида щелочного металла М по э.д.с. Активность воды может быть найдена экспериментально или взята из таблиц для давления водяного пара над растворами соответствующих щелочей, так как о,нго PhioIPhi- Вклад слагаемого —2 lgв э.д.с. элемента играет заметную роль только в концентрированных растворах щелочей. Например, при 20 °С в растворах едкого натра он составляет при концентрации 1,5jW 2, при 6М 7, при 19М 56 мВ. Стандартную э.д.с. Е° определяют методами экстраполяции (см. разд. IX. 1) на основании данных для разбавленных растворов, концентрации которых меньше 0,5 М, так как в этих растворах слагаемым —2А Igj jQ можно пренебречь. Предполагается, что приняты меры к тому, чтобы в растворах отсутствовали карбонаты. [c.553]

    Метод в а к у умтермичес к о г о восстановления. Разработка методов металлотермического получения редких щелочных металлов целиком основывается на достижениях вакуумной техники. Необходимость в специальных вакуумтермических установках [195, 196] определяется заметным давлением пара этих металлов при температуре их восстановления, изменяющим давление в системе в целом, а значит, и влияющим на направление и скорость реакции. Для вакуумтермического процесса исключительно важное значение имеет выбор восстанавливаемого соединения и восстановителя. С этой целью сопоставляют изобарно-изотермические потенциалы реакций восстановления [195, 197]  [c.72]

    Пропионитрил, СгНзСК, имеет достаточно высокую диэлектрическую постоянную (27), относительно высокое давление паров при комнатной температуре и характеризуется широкой областью температур, в которой находится в жидком состоянии (от -92 до +97 °С). Этот растворитель использовался при полярографии ряда щелочных, щелочноземельных и переходных металлов [1. Пропионитрил очень похож на ацетонитрил, поэтому применяется наряду с ним или вместо него. Однако Пропионитрил обладает лучшими спектрофотометрическими свойствами, что характерно для насыщенных нитрилов. [c.11]

    Фенилацетонитрил, СбПзСПгСК, обладает высокой вязкостью (1,93 сП при 25 °С) и низким давлением паров при комнатной температуре. Находится в жидком состоянии в удобной для работы области температур (от -24 до +233 °С). Диэлектрическая постоянная составляет 18,7, что несколько меньше, чем у других нитрилов с низким молекулярным весом. Этот растворитель использовался при полярографии ряда ионов металла на КРЭ [I]. Однако детальное изучение его свойств с точки зрения использования в электрохимических системах не проводилось. Ионы щелочных и щелочноземельных металлов можно исследовать в этом растворителе полярографическим методом. Но-видимому, фенилацетонитрил нельзя применять для большого числа неорганических соединений. [c.11]

    Диметилформамид (диэлектрическая постоянная 37) хорошо растворяет большое число полярных и неполярных органических соединений. Он также должен хорошо растворять многие неорганические перхлораты, особенно щелочных и щелочноземельных металлов, иодиды щелочных и щелочноземельных металлов и хлористый литий. Остальные хлориды растворимы умеренно растворимы и нитраты, но они разлагаются. Особый интерес к ДМФ был проявлен со стороны полярографистов, так как в нем можно измерять потенциалы полуволн ряда активных металлов, чего нельзя сделать в водных растворах, а также вследствие лучшего по сравнению с водой поведения капельного ртутного электрода в ДМФ при высоких катодных потенциалах [4]. ДМФ находится в жидком состоянии в удобной для работы области температур (от -61 до +153°С). Имеет низкое давление паров при комнатной температуре. Это обстоятельство облегчает обращение с растворителем в открытых сосудах, но осложняет процесс перегонки. ДМФ можно использовать в качестве среды в аб-сорбциодной спектроскопии в видимой и ближней ультрафиолетовой областях спектра (ниже 270 нм). ДМФ сильно раздражает кожу, глаза и слизистую обо-лочку. Вдыхание паров с концентрацией 1 10 % ДМФ представляет опасность для жизни животных. [c.15]

    Атомы некоторых элементов, а также многоатомные соединения могут внедряться в графит и образовывать слоистые соединения. Наиболее изучены слоистые соединения щелочных металлов [84]. Как правило, они получаются нагревом графита и соответствующего щелочного металла до температуры, отвечающей определенному давлению паров металла. Считается, что могут образовываться слоистые соединения определенного состава. Такой вывод делается из рассмотрения кривых зависимости состава слоистого соединения от температуры его получения. Эти кривые имеют вид изотерм сорбции, причем каждой ступеньке соответствует слоистое соединение определенного состава (рис. 55). Соотношение между углеродом и металлом имеет дискретные значения, которые для щелочных металлов составляют С Мё, С Ме, СзвЛ е, С Ме, С,(,(,Ме, что отвечает расположению слоя атомов металла через один слой углерода, два и т.д. соответственно. Такие соотношения характерны при применении для синтеза слоистых соединений достаточно совершенных кристаллических форм углерода. Наличие дефектов структуры в реальных материалах может приводить к образованию соединений, отличающихся составом от приведенных. [c.137]

    Отрицательное влияние на улетучивание щелочных металлов имеют кислородные соединения серы, которые обусловливают образование сульфатов, давление паров которых при одной и той же температуре ниже давления паров гидроокислов. Отрицательно на улетучивание щелочных металлов могут влиять и некоторые минеральные составляющие золы. Одним из таких веществ по данным Виккерта и др. [Л. 112, 116] является каолин, обладающий способностью связывать Na l и Na2S04 в малолетучие соединения. [c.88]

    Переработка ванадиевых шлаков хлорированием. Хлорировать ванадиевые шлаки газообразным С 2 можно в расплаве хлоридов щелочных металлов. Метод широко применяется в производстве магния и титана и во многих случаях предпочтительнее хлорирования брикетированной шихты. При хлорировании в солевом расплаве осуществляется хороший контакт между хлором и хлорируемым объектом за счет энергичной циркуляции твердых частиц в газожидкостной системе хлор— расплав. Механизм хлорирования в солевом расплаве недостаточно изучен. Решающим фактором, который определяет степень хлорирования компонентов, являются кинетика протекающих процессов на границе раздела фаз и скорость удаления образующихся хлоридов из расплава. Процесс напоминает кипящий слой, причем пылеунос незначителен, так как частицы материала смочены расплавом. Хлорирование в солевом расплаве сравнительно легко осуществимо, высокопроизводительно. Применительно к ванадиевым шлакам этот процесс имеет то преимущество, что образующиеся хлориды железа и алюминия связываются хлоридами щелочных металлов в малолетучие соединения типа MeFe l4 и MeAl l4, давление пара кото-)ых во много раз меньше давления пара индивидуальных хлоридов [21]. [c.28]

    Соединения хлора в топочном пространстве находятся полностью в парообразном состоянии, а из общего количества калия в золе улетучивается 50—60%. Хлор и щелочные металлы в топке при высоких температурах (1500—1700°С) находятся, в основном, в виде паров R2SO4, R, С1, I2, НС1, ROH, R 1 [Л. 167, 168, 199 и др.]. При этом парциальное давление С1 на четыре порядка выше парциального давления I2 и на порядок ниже давления НС1. Пары хлоридов более устойчивы, чем пары гидроокислов. Со снижением температуры концентрация сульфатов щелочных металлов в продуктах сгорания резко повышается. [c.165]

    Шпильрайн Э. Э., Никаноров Э. В. Экспериментальное исследование давления насыщенного пара щелочных металлов. — ТВТ, 1971, т. 9, с. 434—436. [c.467]

    К. - гетероароматич. соед., ароматичность к-рого обусловлена наличием 7г-электронной системы с участием непо-деленной пары электронов атома N. Слабая к-та (рК в воде 16,7, в ДМСО 19,6). Н Для К. характерны св-ва NH-кислот. Он образует соли с щелочными металлами, 1 разлагает реактив Гриньяра до углеводорода и N-карбазолилмагнийгалогенида. N-Металлопроиз-водные К. легко алкилируются по атому N, с СО образуют карбазол-9-карбоновую к-ту, при взаимод. с ацетиленом под давлением в присут. КОН и ZnO-N-винилкарбазол. Нитрозирование К. идет по атому N с образованием 9-нитро-зокарбазола, к-рый под действием H l при нагр. перегруппировывается в 3-нитрозопроизводное. [c.313]

    Все X. щелочных металлов (табл.) разлагаются экзотермически на M I и Oj с промежрт. образованием перхлоретов, Оксвды переходных металлов - МпОл, Рв20з, СоО, NiO и дрм а также Na Oj катализируют распад X., снижая т-ру разложения на 100-200 С. Выше 300 С X. щелочных металле имеют небольшое собств. давление пара и м. б. возогнаны. Q св-вах МаСЮз см. Натрия хлорат. [c.284]


Смотреть страницы где упоминается термин Щелочные металлы давление пара: [c.328]    [c.714]    [c.328]    [c.137]    [c.29]    [c.238]    [c.294]    [c.65]    [c.202]    [c.209]    [c.211]    [c.168]    [c.261]    [c.396]    [c.65]    [c.74]    [c.389]    [c.189]    [c.282]    [c.310]    [c.75]    [c.94]   
Физическая химия Книга 2 (1962) -- [ c.620 ]




ПОИСК







© 2025 chem21.info Реклама на сайте