Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гены манипулирование

    Практическое применение молекулярной биологии и молекулярной генетики успешно развивается в генной инженерии и биотехнологии. Эти области техники посвящены прежде всего-получению необходимых для медицины и сельского хозяйства белков и полипептидов, основанному на искусственном манипулировании генами. [c.221]

    Казалось бы, что на рубеже 70-х гг. молекулярная биология достигла определенной степени завершенности были установлены структура [1347] и механизмы репликации ДНК, провозглашена центральная догма экспрессии гена (транскрипция, трансляция), выяснены основные аспекты регуляции активности гена. В этот период главным объектом молекулярно-генетических исследований были микроорганизмы. Переход к эукариотам (включая человека) встретился с дополнительными проблемами и трудностями, и кроме того, существовавшие в то время методы не позволяли рассчитывать на получение принципиально новых результатов. Стремительный прорыв в развитии молекулярной генетики в начале 70-х гг. стал возможен благодаря появлению нового экспериментального инструмента-рестрикционных эндонуклеаз. Был открыт путь для широкомасштабного получения генных продуктов (физиологически значимых белков) и для генетического манипулирования с различными организмами. Наши знания о структуре и функции генетического материала у эукариот, включая человека, заметно пополнились. Новые, совершенно неожиданные факты, имеющие как теоретическое, так и практическое значение, были открыты в разных областях, таких, как действие гена, популяционная генетика, эволюция и генетическая консультация, включая пренатальную диагностику (разд. 4.3 и 9.1). Достигнутые успехи заставили ученых задуматься об этической стороне манипулирования с человеческим зародышем, об опасности возникновения возбудителей в процессе генно-ин-женерных исследований. Многие из этих вопросов были подняты самими учеными, активно работающими в данной области. В настоящее время большинство исследователей считает, что опасения, касающиеся [c.122]


    Следует отметить, что работы по генной инженерии, возможности манипулирования генами растений представляют огромный интерес для фундаментальных исследований. Эти работы позволяют изучать основы молекулярной и клеточной биологии растительной клетки, глубинные механизмы процессов, происходящих в ней. Вместе с тем нельзя не задуматься о своевременности прикладного применения результатов генно-инженерных исследований. [c.157]

    В последнее время интерес к БОО появился снова теперь это связано с утилизацией различных отходов (например, целлюлозы и сыворотки). В одних случаях предполагается использовать природные микроорганизмы, в других - микроорганизмы, созданные методами генной инженерии. Но так или иначе, перспективы развития производства БОО будут определяться не природой микроорганизмов, а экономическими соображениями. Возможно, рентабельность производства удастся повысить, если БОО будут получать из побочных продуктов утилизации отходов. Для того чтобы разработать экономичный процесс производства БОО из отходов, необходимо изучить кинетику роста, метаболизм, возможности генетического манипулирования и безопасность многих микроорганизмов, а также вкусовые качества синтезируемых ими продуктов. [c.302]

    В 1974 г., когда стало ясно, что с помощью технологии рекомбинантных ДНК можно создавать организмы, несущие чужеродные гены, ученые, общественность и официальные лица забили тревогу по поводу безопасности этого нового подхода и возможных этических последствий его применения. Такие выражения, как заигрывание с Богом , манипулирование жизнью , самые опасные из проводившихся когда-либо научных исследований , творимая человеком эволюция без конца мелькали в прессе. Больше всего тревожило то, что случайно, а возможно, и намеренно, в военных целях, будут созданы уникальные, ранее не существовавшие в природе микроорганизмы, которые станут причиной эпидемий или экологических катастроф. В ответ на эти панические ожидания группа ведущих молекулярных биологов предложила наложить мораторий на некоторые эксперименты с рекомбинантными ДНК, особенно на те, в которых используются патогенные микроорганизмы. [c.518]

    Второй тип двойной спирали, содержащей РНК, был открыт в 1961 г. Он создается в результате гибридизации цепи РНК с цепью ДНК, имеющей комплиментарную последовательность оснований [64], Важность таких РНК-ДНК-гибридов исключительно возросла, и сегодня они являются ключевым звеном в определении первичных последовательностей и в умелом манипулировании с генами (см. разд. 22.4.4 и 22.5.4). Такие гибриды быстро образуются ири инкубации раствора двух однонитевых молекул при температуре примерно на 25°С ниже, чем температура, при которой двойная спираль наполовину диссоциирована. Они более стабильны, чем дуплексы ДНК-ДНК с соответствующей последовательностью оснований [65]. По-видимому, такие гибриды также имеют конформацию /4-формы ДНК- [c.60]


    Я выбрал крайние примеры. Однако в природе известно множество ситуаций, когда животные и растения манипулируют, хотя и не в такой резко выраженной форме, поведением других особей, принадлежащих к тому же самому или к какому-либо другому виду. Во всех случаях, в которых естественный отбор благоприятствует генам, определяющим такое манипулирование, мы вправе говорить, что эти гены обладают (расширенными фенотипическими) эффектами, выражающимися в манипулировании поведением другого организма. В каком теле физически находится данный ген, не играет роли. Объектом манипулирования может быть то же самое или другое тело. Естественный отбор благоприятствует тем генам, которые манипулируют окружающим миром, чтобы обеспечить собственное размножение. Это ведет к тому, что я называю центральной теоремой расширенного фенотипа Поведение данного животного направлено на максимизацию выживания генов, определяющих это поведение, независимо от того, находятся ли эти гены в теле того животного, о котором идет речь. Я сформулировал здесь эту теорему применительно к поведению животного, но она, конечно, приложима к окраске, размерам, форме — ко всему, чему угодно. Настало, наконец, время вернуться к проблеме, с которой мы начали — к противоречию между индивидуальным организмом и геном как конкурирующими между собой кандидатами на центральную роль в естественном отборе. В предыдущих главах я высказал допущение, что здесь нет проблемы, поскольку размножение индивидуума равноценно выживанию гена. Я допускал, что можно говорить либо о том, что Организм старается размножать все свои гены , либо о том, что Гены стараются сделать так, чтобы ряд последовательных организмов обеспечил их размножение . Казалось бы, это два способа выразить одну и ту же мысль, а выбор слов зависит от вкуса. Но так или иначе противоречие сохранялось. [c.195]

    Однако устранение причины наследственной болезни означает такое серьезное маневрирование с генетической информацией человека, как доставка нормального гена в клетку, выключение мутантного гена, обратная мутация патологического аллеля. Эти задачи достаточно трудны даже при манипулировании с простейшими организмами. К тому же, чтобы провести этиотропное лечение какой-либо наследственной болезни, надо изменить структуру ДНК не в одной клетке, а во многих функционирующих клетках (и только функционирующих ). Прежде всего для этого нужно знать, какое изменение произошло в гене в результате мутации, т.е. наследственная болезнь должна быть описана в химических формулах. [c.292]

    Успехи генной инженерии в методах манипулирования генами на основе рекомбинантных ДНК, получаемых in vitro, а также методы клеточной инженерии открывают огромные перспективы в экспериментальной биологии и в создании новых форм организмов, полезных человеку. Мощь этих методов поначалу испугала самих исследователей. Вот как выразил это Э. Чаргафф в 1973 г. Имеем ли мы право посягать необратимым образом на эволюционную мудрость миллионов лет только для того, чтобы удовлетворить амбицию и любопытство нескольких ученых Прошел, однако, период первого восхищения и растерянности. Генная и клеточная инженерия становятся повседневной рутиной научного эксперимента, используются для селекции продуцентов полезных белков (см. гл. 22) и в медицинских целях (см. гл. 21). Возникла новая область практического использования этих методов — биотехнология. Все очевиднее ста- [c.288]

    Рекомбинация. Соединение генов, группы генов или частей генов в результате биологического процесса или в ходе лабораторного манипулирования, приводящее к новым комбинациям генов. [c.1017]

    Технология рекомбинантных ДНК позволяет выделять гены как прокариотического, так и эукариотического происхождения, переносить этот ген (или несколько генов) в хромосомы реципиентного растения и обеспечивать его экспрессию. Применение этой технологии делает поиск более целенаправленным и значительно расширяет возможности манипулирования генетическим аппаратом. [c.49]

    И включают рекомендации по уходу за животными, а также методики микроинъекции, манипулирования с ДНК и анализа экспрессии генов в трансгенных животных. [c.314]

    На рубеже 70-х гг. XX в. молекулярная генетика достигла определенной завершенности в своем развитии были установлены структура и механизм репликации ДНК, провозглашена центральная догма экспрессии гена (транскрипция, трансляция), выяснены основные аспекты регуляции активности гена. Главным объектом исследования в то время служили микроорганизмы. Существовавпше в тот период методы не позволяли серьезно продвинуться в изучении строения геномов эукариот, в том числе и генома человека. Стремительный прорыв в молекулярной генетике в 70-е гг стал возможен благодаря появлению новых экспериментальных подходов — использованию рестрикционных эндо-нуклса.3 и становлению нового направления в молекулярной генетике — генной инженерии. С помощью этих методик были открыты совершенно неожиданные факты, имеющие теоретическое и практическое значение в областях знаний, связанных с действием генов. Это относится к генетическому консультированию, включая нрена-та7П>ную диагностику, к развитию новых подходов в изучении проблем эволюции и популяционной генетики. Эти же успехи заставили ученых задуматься об этической стороне манипулирования с человеческим зародышем, [c.65]


    Фундаментальные исследования завершаются, как правило, установлением или доказательством новых фактов, закономерностей в соответствующей отрасли знаний Рано или поздно эти факты (закономерности) находят практическое воплощение Тем не менее, нельзя противопоставлять фундаментальные и прикладные исследования, так как на определенном этапе нередко можно видеть трансформацию их в противоположном направлении Например, на основании обобщения полученных сведений о нуклеиновых кислотах Дж Уотсон и Ф Крик смогли предложить природную модель двойной спирали ДНК и, тем самым, подвели материальный фундамент под ранее известный якобы "мифический" ген На этой основе возникли многочисленные практические разработки по молекулярной биологии гена и, в том числе, например, по мутагенезу С другой стороны, практические разработки по выделению и манипулированию с ДНК различного происхождения стали основой для постулирования общегенетических законов, присущих всему живому Вот почему и сегодня справедливы слова великого Л Пастера, сказанные по этому поводу "Нет, тысячу раз нет, не существует ни одной категории наук, которой можно было бы дать название прикладых наук Существуют науки и приложение наук, связанные между собой как плод и породившее его дерево" [c.45]

    Необходимость манипулирования генами диктуется конкретными задачами фундаментальных и прикладных исследований. Для понимания молекулярных механизмов функционирования отдельных генов и взаимосвязанных генетических систем большое значение имеет работа с изолированными генами. Такие исследования позволяют определять границы генов, выделять их в чистом виде и идентифицировать элементы структуры, существенные для функционирования. Доказательством функциональной значимости выделенного участка генома может быть только его нормальная экспрессия в модельной генетической системе. Поэтому следующим этапом изучения выделенного гена всегда является перемещение его в такую генетическую систему, где экспрессия гена легко обнаруживается. Результаты экспрессии оценивают либо по появлению белкового продукта, кодируемого исследуемым геном, либо по изменению функций биологической системы вследствие появления в ней новой ферментативной или другой активности, например, по компенсации присутствующей в этой системе мутации. Таким образом, в результате исследования структуры конкретного гена и моделирования его экспрессии в искусственной генетической системе можно понять особенности его функционирования в живом организме. Подобный подход успешно применяют как к известным генам, которые выделяются целенаправленно, так и к неидентифицированным ранее последовательностям нуклеотидов, функциональную значимость которых определяют лишь после выделения их в чистом виде. Последний подход реализуется в так называемой обратной генетике. [c.38]

    Получалось, что первичные события, приводящие в итоге к раку, разыгрываются в генетическом материале, в ДНК. А раз так, то к штурму проблемы рака вновь приступили молекулярные биологи. Только на этот раз, спустя десять лет после работ Темина и Балтимора, они были уже во всеоружии мощных методов манипулирования с ДНК — методов генной инженерии. [c.149]

    Мы не будем сейчас детально рассматривать другие функции, необходимые для установления лизогенного состояния, и лишь заметим, что инфицирующая ДНК фага лямбда должна быть интегрирована с бактериальным геномом (гл. 35). Для интеграции необходимо образование продукта гена int, который экспрессируется со своего собственного промотора Р. Для инициирования транскрипции необходимы продукты генов lI/ IlL Последовательность промотора Pi проявляет гомологию с последовательностью Ре- Функции, необходимые для установления лизогенного контролирующего цикла, подчиняются тому же контролю, что и функция, физически необходимая для манипулирования ДНК. Таким образом, завершение процесса лизогенизации находится под контролем, обеспечивающим осуществление всех необходимых событий в согласованной последовательности. [c.218]

    Клонирование животных. Серьезные успехи, достигнутые в разработке методов манипулирования in vitro с ранними эмбрионами животных, позволили довести ряд экспериментов с уровня клеток до организма (большинство работ сделано на мышах). Конечно, наиболее впечатляющими являются достижения по получению трансгенных животных с использованием клонированных генов (см. гл. 13). Однако и результаты опытов по перекомбинации зародышевых клеток и замене ядер, позволившие получить клоны животных или животные химеры (см. стр. 149), дали многое для понимания механизмов дифференцировки клеток в процессе онтогенеза. [c.148]

    Для создания химер — организмов, обладающих необычными сочетаниями признаков, разработаны методы манипулирования генами in vitro. Основной инструментарий этих методов — прежде всего ферменты, действующие на ДНК, векторы — переносчики генов, а Tat xe синтетические олигонуклеотиды (линкеры, адаптеры, праймеры, зонды и т. д.), с помощью которых объединяют, синтезируют, отыскивают и анализируют гены. Многие из перечисленных препаратов имеются в готовом виде. [c.161]

    При планировании структуры гена можно заранее предусмотреть необходимые участки узнавания рестриктаз, что облегчит манипулирование с целевым геном, учесть особенности микроорганизма, в котором предполагается осуществить его экспрессию, выбрав наиболее подходящие для этого кодоны, избавиться как от нежелательных инвертированных повторов, ведущих к формированию вторичных структур мРНК, так и от прямых повторов, способствующих внутримолекулярной рекомбинации. [c.59]


Смотреть страницы где упоминается термин Гены манипулирование: [c.404]    [c.529]    [c.982]    [c.169]    [c.7]    [c.276]    [c.268]    [c.8]    [c.372]    [c.376]    [c.427]    [c.166]    [c.65]   
Генетика человека Т.3 (1990) -- [ c.163 ]




ПОИСК





Смотрите так же термины и статьи:

ДНК манипулирование с ней



© 2025 chem21.info Реклама на сайте