Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

фотометр кулонометрический

    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]


    Для обнаружения конечной точки кулонометрического титрования можно применить те же способы, которые известны в титриметрическом анализе визуальные (применение цветных индикаторов) и инструментальные (потенциометрия, амперометрия, фотометрия и др.) методы. [c.145]

    Наибольшее распространение в кулонометрическом титровании получили амперометрические и потенциометрические способы индикации конечной точки титрования, в том числе с ионоселективными электродами и с двумя поляризованными электродами. Наряду с ними применяются также оптические способы установления конечной точки кулонометрического титрования (фотометрия и спектрофотометрия), в основе которых лежит зависимость оптической плотности раствора от времени генерации титранта либо от количества затраченного электричества. Потенциометрические и амперометрические способы индикации конечной точки титрования рассмотрены в предыдущих главах. [c.527]

    В заключение необходимо отметить, что методы получения производных для газохроматографического анализа разработаны достаточно подробно и широко используются на практике. Однако эти методы рассчитаны, как правило, на использование в последующем газохроматографическом определении только двух типов детекторов пламенно-ионизационного (ПИД) и электронно-захватного (ЭЗД). Более широкие возможности для селективного определения отдельных классов органических соединений открываются при использовании и предварительных реакций, связанных с введением в молекулу анализируемых соединений атомов серы, фосфора, азота и других элементов, для определения которых разработаны и успешно используются в хроматографической практике селективные детекторы пламенно-фотометри-ческий, термоионный, электрохимические (кулонометрический, полярографический и др.). В данном случае мы можем и должны говорить о развитии аналитической химии меченых нерадиоактивных атомов. Отметим, что в ряде случаев может быть полезным использование для тех же целей и методов введения в молекулы анализируемых соединений групп, содержащих радиоактивные изотопы, например и [154]. Особенно перспективно, по нашему мнению, использование комбинированных реагентов и детекторов для решения задачи идентификации компонентов сложных смесей, что является наиболее важной стороной использования метода предварительных реакций. Вторым перспективным направлением является применение предварительных реакций с целью концентрирования примесей. [c.49]


    Фотометрический способ определения конечной точки основан на изменении светопоглощения раствора в ходе титрования. Аппаратура и общая методика в этом способе мало отличаются от применяемых при спектрофотометрических титрованиях [368]. Кулонометрическую ячейку помещают в кюветное отделение какого-либо фотометра (например, фотоэлектроколориметра ФЭК-Н—57 или спектрофотометра СФ-4) таким образом, чтобы в ходе титрования можно было периодически или непрерывно снимать значения оптической плотности раствора. В зависимости от интенсивности светопоглощения определяемого вещества и титранта при выбранной длине волны [c.38]

    Эффективность генерирования брома генерирующим электролитом проверяли с помощью титрования раствором арсенита. Результаты этого определения при наличии катализатора и без него приводятся в табл. 7.8. При анализе без катализатора фотометри-рование проводили при 320 нм. Полученные результаты показывают, что в применявшемся генерирующем электролите (см. методику) кулонометрическое титрование брома со спектрофотометрической регистрацией конечной точки титрования может быть проведено удовлетворительным образом. Хлорная ртуть(П) не илняет на результаты анализа. [c.307]

    Фотометрический способ определения конечной точки основан на изменении светопоглощвния раствора в ходе титрования. Аппаратура и общая методика в этом способе мало отличаются от применяемых при спектрофотометрических титрованиях [266]. Кулонометрическую ячейку помещают в кюветное отделение какого-либо фотометра (например, фотоэлектроколориметра ФЭК-н-57 или спектрофотометра СФ-4) таким образом, чтобы в ходе титрования можно было периодически или непрерывно снимать значения оптической плотности раствора. В зависимости от интенсивности светопоглощвния определяемого вещества и титранта при выбранной длине волны проходящего через ячейку излучения оптическая плотность раствора в процессе титрования может изменяться (примерно) по одному из типов, показанных на рис. 9. Разница здесь действительно состоит лишь в том, что на графиках по ординате откладывают н величину тока, а значения оптической плотности раствора в различные моменты титрования. Иногда объем титруемого раствора и размеры ячейки таковы, что поместить их в соответствующий фотометр не представляется возможным. Тогда периодически прерывают генерирование титранта, отбирают часть электролита, фотометрируют его при соответствующей длине волны, затем переносят отобранную порцию электролита обратно в ячейку и продолжают титрование. Проведя такую операцию несколько раз, по полученным данным строят [c.33]

    Во второй части представлены физико-химические и физические методы анализа электрохимические (потенциометрический, кулонометрический, полярографический и амперометрич еский методы) и оптические (спектрофотометрический и люминесцентный, метод эмиссионной фотометрии пламени). В этой части значительное место уделено сущности, теоретическим основам физико-химических и физических методов анализа, а также используемой в указанных методах аппаратуре. [c.4]

    В кулонометрическом титровании могут быть использованы все четыре типа химических реакций иисло но-основные, осаждения, комплексообразования и окисления-восстановления. Для обнаружения (Конечной точки кулонометрического титрования можно применить те же способы, которые известны в титриметрическом ана-Л1изе визуальные (применение цветных индикаторов) и инструментальные (потенциометрию, амперометрию, фотометрию и др.) м етоды. [c.78]

    Березкиной и Элефтеровой [200] для определения следов двуокиси серы был предложен метод изотермического концентрирования, который целесообразно применять и при анализе примесей некоторых других соединений. Микроколичества сернистых соединений можно определять с помощью аргонового ионизационного или электронозахватного детекторов, а также анализировать сернистые соединения на чувствительном и селективном пламенно-фотометрическом детекторе или с помощью кулонометрической ячейки. Пламенный фотометр особенно удобен при анализе следов серусодержащих газов в сложных смесях, например в воздушных загрязнениях, так как высокая селективность этого детектора может быть использована для идентификации. Для определения ЗОг в смеси с постоянными газами применен эмиссион- [c.97]

    В неорганическом анализе широко применяют концентрирование в статических условиях. Сорбцию микроколичеств сурьмы (V) из разбавленных растворов азотной кислоты оксидом алюминия ускоряют облучением растворов ультразвуком [647]. Гидратированный оксид железа (III) используют для концентрирования до 10 г/г хрома и ванадия при анализе алюминия высокой чистоты методом кулонометрического титрования [648]. Микроколичества фосфат- и арсенат-ионов количественно сорбируют на порошке оксида цинка. Затем сорбент растворяют в 6 М хлороводородной кислоте [649]. Метод использован при спектрофотометрическом определении фосфора в воде, а также фосфора и мышьяка в свинце высокой чистоты. При анализе меди 10 г/г висмута селективно выделяют на гидратированном оксиде свинца, который затем растворяют в растворе оксалата натрия и определяют висмут полярографически [650]. Микроколичества мышьяка и фосфора из водных растворов концентрируют на прокаленном сульфате бария или стронция [651, 652]. При спектрофотометрическом определении п -10 г/г Se в меди селен сорбируют на сульфате свинца, который затем растворяют в растворе тартрата аммония и анализируют [397]. При определении до 0,01 мкг/л цезия в воде его сорбируют на фосформолибдате аммония. Затем сорбент растворяют в растворе гидроксида натрия и экстрагируют тетрафенилборатом натрия в смеси метилизобутилкетона и циклогексана. Цезий определяют методом фотометрии пламени [653]. [c.101]



Смотреть страницы где упоминается термин фотометр кулонометрический: [c.34]    [c.164]    [c.164]   
Аналитическая химия Том 2 (2004) -- [ c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Фотометрия

Фотометры



© 2025 chem21.info Реклама на сайте