Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Субстратные циклы

    Другие субстратные циклы включают превращение глюкозы в глю-козо-6-фосфат и гликолиз глюкозо-6-фосфата с образованием глюкозы (рис. 11-11, наверху, слева), синтез и распад гликогена (наверху, справа), а также превращение фосфоенолпирувата в пируват и обратное превращение пирувата в фосфоенолпируват через оксалоацетат и малат (которые осуществляются частично в митохондриях). [c.513]


    Регулируется путем изменения активности ферментов субстратных циклов. [c.159]

    Мышечная работа сопровождается образованием аммиака, непосредственным источником которого служит аденозин-5-фосфат (АМР) [15б, 157]. Этот факт позволил выявить еш,е один бесполезный субстратный цикл (гл. И, разд. Е,6), действующий благодаря присутствию в одних и тех же клетках ферментов, ответственных за процессы биосинтеза и распада [уравнение (14-55)]. Насколько этот цикл важен для ра- боты мышц, пока неизвестно. [c.171]

    С, если максимальная скорость субстратного цикла в холодной пчеле (5°С) может составлять 40 мкмоль/(мин/г) и если пчела не обменивается теплом с окружающей средой. [c.519]

    Значение холостых субстратных циклов [c.220]

    Каждая из необратимых реакций гликолиза вместе с соответствующей ей обратимой реакцией глюконеогенеза составляет субстратные циклы, эти циклы служат точками приложения регуляторных механизмов. [c.151]

    Направление реакций первого субстратного цикла регулируется главным образом концентрацией глюкозы. При пищеварении концентрация глюкозы в крови повышается (до 10—20 мкмоль/л). Активность глюкокиназы в этих условиях максимальна. Вследствие этого ускоряется гликолитическая реакция глюкоза глюкозо-6-фосфат. Кроме того, инсулин индуцирует синтез глюкокиназы и ускоряет тем самым фосфорилирование глюкозы. Поскольку глюкокиназа печени не ингибируется глюкозо-6-фосфа-том (в отличие от гексокиназы мышц), то основная часть глюкозо-6-фосфата направляется по гликоли-тическому пути. [c.155]

    Направление реакций второго субстратного цикла зависит от активности фосфофруктокиназы и фосфатазы фруктозо-1,6-бисфосфата. Активность этих ферментов зависит от концентрации фрукто-зо-2,6-бисфосфата. [c.155]

    В регуляции третьего субстратного цикла основная роль принадлежит пируваткиназе, фосфорилированная форма которой неактивна, а дефосфорилированная активна (рис. 6.20). [c.157]

    Координация в регулировании II и П1 субстратных циклов достигается с помощью фрукто-30-1,6-бисфосфата — продукта II субстратного цикла (гликолитическое направление), который является аллостерическим активатором пируваткиназы. В период пищеварения вследствие ускорения начальных стадий гликолиза концентрация фруктозо-1,6-бисфосфата повыщается, что приводит к дополнительной активации пируваткиназы (см. рис.6.18). [c.157]

    Если прямая и обратная реакции субстратных циклов протекают одновременно, то происходит бесполезный расход АТР и соответственно источников энергии, например жиров  [c.203]

    Каждая из необратимых реакций гликолиза вместе с соответствующей ей реакцией глюконеогенеза образует так называемый субстратный цикл (см. рис. 9.21, циклы I, II, III, считая по направлению глюконеогенеза) эти циклы служат точками приложения регуляторных механизмов, направляющих метаболизм на путь или гликолиза, или глюконеогенеза (см. ниже). [c.265]


    При катаболизме многих аминокислот в качестве промежуточных продуктов образуются пируват или оксалоацетат, которые могут включаться в путь глюконеогенеза на стадии первого субстратного цикла. [c.265]

    I, и, III — субстратные циклы БИФ — бифункциональный фермент [c.274]

    Субстратный цикл III регулируется главным образом концентрацией глюкозы. При пищеварении концентрация глюкозы в гепатоцитах существенно повышается и, соответственно, повышается скорость фосфорилирования глюкозы глюкокиназой (см. разд. Фосфорилирование глюкозы ). Поскольку в этих условиях активированы гликолитические ветви субстратных циклов II и I, то основная часть глюкозо-6-фосфата направляется на путь гликолиза. [c.275]

    Фруктозо-1,6-бисфосфат является аллостерическим активатором пируваткиназы. При ускорении начальных стадий гликолиза после приема пищи концентрация фруктозо-1,6-бисфосфата повышается, что приводит к дополнительной активации пируваткиназы. Этим достигается координация функционирования I и II субстратных циклов. [c.275]

    Было высказано предположение, согласно которому субстратный цикл, включающий фосфофруктокиназу и фруктозодифосфатазу, используется шмелями для нагревания их летательных мышц до 30 °С перед началом полета. Кларк и др. [56] показали, что максимальные скорости каталитической активности для обоих ферментов составляют приблизительно 44 мкмоль/мин/г) ненагретой ткани. У летящих пчел гликолиз идет со скоростью, равной приблизительно 20 мкмоль/(мин/г) ткани, без субстратного цикла. У пчел, находящихся в состоянии покоя при 27 °С, функционирования субстратных циклов не было обнаружено, однако при 5°С субстратный цикл происходит со скоростью 10,4 мкмоль/(мин/г), тогда как гликолиз замедляется до 5,8 мкмоль/(мин/г). Если функционирование субстратного цикла дает тепло для нагревания насекомого, то оцените, сколько времени необходимо для того, чтобы его температура достигла [c.518]

    Субстратные циклы амплифицируют метаболические сигналы и образование тепла [c.110]

Рис. 15.7. Пример стимулированного АТР субстратного цикла, функционирующего с двумя различными скоростями. Небольшое изменение скоростей двух противоположно направленных реакций приводит к значительному изменению чистого выхода продукта В, Рис. 15.7. Пример стимулированного АТР <a href="/info/103907">субстратного цикла</a>, функционирующего с двумя <a href="/info/306687">различными скоростями</a>. <a href="/info/1461937">Небольшое изменение</a> скоростей <a href="/info/1696521">двух</a> <a href="/info/249963">противоположно направленных</a> <a href="/info/1477776">реакций приводит</a> к значительному <a href="/info/1618679">изменению чистого</a> выхода продукта В,
    Теоретическая направленность занятий в данном разделе практикума по биохимии связана с анализом основных высокоэффективных механизмов регуляции активности ферментов, обсуждаемых в настоящее время в учебной литературе и на страницах известных биохимических журналов. К таким механизмам относятся аллостерический механизм контроля активности, реализующийся на уровне существования множественных форм ферментов механизм усиления, связанный с функционированием субстратных циклов адсорбционный механизм контроля, реализующийся при обратимом взаимодействии ферментов с биологическими мембранами регуляторный механизм с участием вторичных мессенжеров (цАМФ, С +) и универсальных модуляторов белковой природы (кальмодулин). [c.329]

    При изучении регуляции альтернативных метаболических путей, таких как гликолиз и глюконеогенез, большое значение придается ключевым реакциям, некоторые участники которых являются общими интермедиатами указанных метаболических путей. К числу таких химически различных альтернативных реакций относятся, например, фосфофруктокиназная и фруктозо-1,6-дифосфатазная реакции гликолиза и глюконеогенеза соответственно. Указанные реакции катализируют так называемый субстратный цикл обратимого превращения фруктозо-6-фосфата во фруктозо-1,6-дифосфат, протекающего с затратой одной молекулы АТФ. [c.354]

    Скорость превращения веществ в альтернативных метаболических путях, а значит и их предпочтительная направленность решающим образом зависят от особенностей функционирования ферментов субстратного цикла. Для таких ферментов характерна, как правило, реци-прокная регуляция с участием аллостерических эффекторов. В случае рассматриваемого субстратного цикла эффекторами являются АМФ — ингибитор фруктозо-1,6-дифосфатазы и активатор фосфофруктокиназы, а также цитрат-ион, являющийся активатором фруктозо-1,6-дифосфатазы и ингибитором фосфофруктокиназы. [c.354]

    Цель задачи заключается в изучении регуляторных свойств фруктозо-1,6-дифосфатазы печени крысы как фермента-участника субстратного цикла. Фруктозо-1,6-дифосфатаза (D-фруктозо-1,6-дифосфат-1-фосфогидролаза, КФ 3.1.3.11) катализирует реакцию гидролиза фруктозо-1,6-дифосфата с образованием фруктозо-6-фосфата  [c.354]


    Вопрос о связи между действием фосфофруктокиназы и фруктозо-1,6-дифосфатазы [уравнение (11-19), стадия г рис. 11-11] остается нерешенным. Фруктозо-6-фосфат фосфорилируется и дает фруктозодифосфат, который в свою очередь гидролизуется, вновь превращаясь в фруктозо-6-фосфат. В результате получается бесполезный цикл (часто называемый бессмысленным циклом или субстратным циклом), который по существу ничем не завершается, кроме расщепления АТР до ADP и Р (АТРазная активность). Циклы этого типа часто встречаются в метаболизме, однако обычно они не приводят к гибельно быстрой потере АТР из-за четкого контроля метаболических процессов. В принципе в данный момент времени полностью активируются только один из двух ферментов, катализирующих стадию г [уравнение (11-19)]. В зависимости от метаболического состояния клетки может активно протекать процесс распада при небольшом биосинтезе или активный процесс биосинтеза при слабом распаде. Некоторые из механизмов контроля показаны на рис. 11-11. Содержание АТР и АМР играет при этом наиболее важную роль—низкая концентрация АМР включает киназу и выключает фосфатазу. У разных видов ингибирующее действие по типу обратной связи может оказывать АТР, РЕР или цитрат. Не исключено, что в будущем будут обнаружены новые механизмы регуляции фруктозо-1,6-дифосфатазой. [c.513]

    Если в норме субстратные циклы находятся под строгим контролем то в патологических ситуациях они, по-видимому, могут служить источником неконтролируемого выделения тепла (дополнение 11-Е). Например, торокальная температура у шмеля в полете должна достигать по крайней мере 30°С. В холодные дни для обогрева летательных мышц насекомые используют субстратный цикл, катализируемый фосфофруктокиназой и фруктозодифосфатазой [56]. [c.514]

    Причина гипертермии, согласно имеющимся экспериментальным даннымб, состоит в нарушении субстратного цикла (разд. Е, 6), включающего такие ферменты, как фосфофруктокиназа и фруктозодифосфатаза, которые ответственны за внезапный гидролиз АТР и выделение тепла. Вопрос о том, каким образом анестетик вызывает такую ответную реакцию-организма у человека, остается неясным, однако можно предположить, что важную роль в этой реакции играет взаимодействие анестетика с клеточными мембранами, нарушающее нормальную работу гормональных регуляторных систем. Другое возможное объяснение связано с действием анестетиков на митохондриальные мембраны . [c.514]

    Ферменты необратимых реакций глюконеогенеза 11 - пируваткарбоксилаза 12 - фосфоенолпируваткарбоксикиназа 13 — фруктозо-1,6-бисфосфатаза 14 — глюкозо-6-фосфатаза. 1-1П - субстратные циклы. [c.151]

    БИФ—бифункциональный фермент (фруктозо-2,6-бисфосфатаза/фосфофруктокиназа-2) БИФ-ОН — нефосфорилированный фермент БИФ- — фосфорилированный фермент ПДК-ОН — нефосфорилированный пируватдегидрогеназный комплекс ПК-ОН -нефосфорилированная пируваткиназа ПК- — фосфорилированная пируваткиназа ГАФ - глицеральдегидфосфат ДАФ — диоксиацетонфосфат ФЕП — фосфоенолпируват. 1—111 — субстратные циклы. [c.156]

    Активность ферментов второго субстратного цикла зависит от концентрации фруктозо-2,6-бисфосфата (см. рис. 9.31). Как и фруктозо-1,6-бисфосфат, фруктозо-2,6-бисфосфат образуется из фруктозо-6-фосфата и может снова превращаться во фруктозо-6-фосфат, т. е. тоже получается субстратный цикл. Обе реакции этого цикла катализирует один фермент — бифункциональный фермент (БИФ), который регулируется путем фосфорилирования-дефосфорилирования. Дефосфорилированный фермент (БИФ-ОН) обладает киназной активностью (фруктозо-6-фосфат-2-киназа), а фосфорилированный (БИФ-Р) — фосфатазной активностью (фосфатаза фруктозо-2,6-бисфосфата). Киназная и фосфатазная реакции катализируются разными активными центрами, но в каждом из двух состояний фермента — фосфорилированном и дефосфорилированном — один из активных центров ингибирован. [c.275]

    Пара реакций, таких, как фосфорилирование фруктозо-6-фосфата во фруктозо-1,6-бисфосфат и обратный гидролиз последнего до фруктозо-6-фосфата, называется субстратным циклом. Как уже упоминалось, в большинстве клеток эти реакции никогда не осуществляются с максимально возможной скоростью одновременно в силу реципрокного аллостернческого контроля. Однако исследования с применением изотопной метки показали, что в ходе глюконеогенеза имеет место фосфорилирование фруктозо-6-фосфата во фруктозо-1,6-бис-фосфат. Ограниченное функционирование таких циклов обнаружено и в случае других пар противоположно направленных необратимых реакций. Наличие таких циклов объясняли несовершенством метаболической регуляции, и субстратные циклы называли иногда бесполезными, или хо-лостыми, циклами Однако в настоящее время представляется более вероятным, что субстратные циклы имеют определенное биологическое значение. Одна из возможностей состоит в том, что эти циклы амплифицируют биологические сигналы. Предположим, что скорость превращения А в В равняется 100, а В в А-90, так что начальный чистый выход реакции составляет 10. Примем, что аллостерический эффектор повышает скорость реакции А -> В на 20% (до 120) и реципрокно снижает скорость реакции В -> А на 20% (до 72). Новый чистый выход равен 48. Таким образом, изменение на 20% скоростей противоположно направленных реакций приводит к повышению чистого выхода  [c.110]

    Другая потенциальная биологическая роль субстратных циклов состоит в том, чтобы генерировать тепло, продуцируемое при гидролизе АТР. Ярким примером такого феномена служат шмели, которым для полета необходимо поддерживать температуру грудного отдела около 30°С. Шмели способны поддерживать такую высокую температуру грудного отдела и осуществлять поиск пищи даже при температуре всего 10°С, потому что их летательная мышца обладает высокой активностью и фосфофруктокиназы, и фруктозобисфос-фатазы. Поскольку эта фруктозобисфосфа-таза не ингибируется АМР, есть основание думать, что данный фермент специально предназначен для генерирования тепла. В летательной мышце медоносной пчелы в отличие от мышцы шмеля фруктозобис-фосфатазная активность почти отсутствует, и в соответствии с этим пчела не может [c.111]


Смотреть страницы где упоминается термин Субстратные циклы: [c.513]    [c.154]    [c.274]   
Смотреть главы в:

Биохимия ТОМ 2 -> Субстратные циклы


Биологическая химия (2004) -- [ c.265 , c.274 , c.275 ]

Биохимия Т.3 Изд.2 (1985) -- [ c.110 ]




ПОИСК







© 2025 chem21.info Реклама на сайте