Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фруктоза фосфорилирование

    Фосфорилирование фруктозо-6-фосфата F6P, катализируемое фосфофруктокиназой PFK. [c.40]

    Фермент гексокиназа способен катализировать фосфорилирование не только В-глюкозы, но и других гексоз, в частности В-фруктозы, В-маннозы и т.д. В печени, кроме гексокиназы, существует фермент глюкокиназа, который катализирует фосфорилирование только В-глюкозы. В мышечной ткани этот фермент отсутствует (подробнее см. главу 16). [c.328]


    На нормальном пути Эмбдена — Мейергофа — Парнаса (например, в мышце) фруктозо-6-фосфат перед расщеплением претерпевает фосфорилирование под действием АТФ и фермента фосфофруктокиназы до фруктозо-1,6-дифосфата IV (реакция 5). Расщепление фруктозо-1,6-дифосфата до 3-фосфоглицеринового альдегида V и диоксиацетонфосфата VI (реакция 6) происходит под действием альдолазы между образовавшимися триозофосфатами устанавливается равновесие. Это превращение альдоза кетоза (реакция 7) катализируется триозофосфат-изомеразой. Таким образом, из одной молекулы глюкозы образуются две молекулы 3-фосфоглицеринового альдегида V. [c.368]

    Фосфофруктокиназа катализирует фосфорилирование фруктозо- [c.237]

Рис. 17-29. Взаимозависимая регуляция гликолиза, окисления пирувата, цикла лимонной кислоты и окислительного фосфорилирования, определяемая относительными концентрациями АТР, ADP и АМР. Регуляторные воздействия, ингибирующие и стимулирующие, обозначены здесь красными полосками и стрелками. При высокой концентрации АТР и соответственно при низких концентрациях ADP и АМР скорости гликолиза, окисления пирувата, цикла лимонной кислоты и окислительного фосфорилирования минимальны. Если расходование АТР в клетке резко усиливается и, значит, концентрации ADP, АМР и Pj возрастают, то все эти четыре процесса ускоряются. Взаимосвязь гликолиза и цикла лимонной кислоты, осуществляемая через цитрат (она также показана на этой схеме), дополняет регуляторное действие аденилатной системы. Кроме того, при повышении концентраций NADH и ацетил-СоА подавляется процесс окисления пирувата до ацетил-СоА. ГбФ-глюкозо-б-фосфат ФбФ-фруктозо-б-фосфат ФДФ -фруктозодифосфат ГЗФ - глицеральдегид-З-фосфат ЗФГ - 3-фосфоглицерат 2ФГ-2-фосфоглицерат ФЕП-фос-фоенолпируват а-КГ-а-кетоглутарат. Рис. 17-29. Взаимозависимая <a href="/info/187144">регуляция гликолиза</a>, <a href="/info/102403">окисления пирувата</a>, <a href="/info/71266">цикла лимонной кислоты</a> и <a href="/info/38828">окислительного фосфорилирования</a>, определяемая <a href="/info/13570">относительными концентрациями</a> АТР, ADP и АМР. Регуляторные воздействия, ингибирующие и стимулирующие, обозначены здесь красными полосками и стрелками. При <a href="/info/330627">высокой концентрации</a> АТР и соответственно при <a href="/info/334174">низких концентрациях</a> ADP и АМР <a href="/info/98619">скорости гликолиза</a>, <a href="/info/102403">окисления пирувата</a>, <a href="/info/71266">цикла лимонной кислоты</a> и <a href="/info/38828">окислительного фосфорилирования</a> минимальны. Если расходование АТР в клетке резко усиливается и, значит, концентрации ADP, АМР и Pj возрастают, то все эти четыре <a href="/info/987728">процесса ускоряются</a>. Взаимосвязь гликолиза и <a href="/info/71266">цикла лимонной кислоты</a>, осуществляемая через цитрат (она также показана на этой схеме), дополняет <a href="/info/1392706">регуляторное действие</a> аденилатной системы. Кроме того, при <a href="/info/105394">повышении концентраций</a> NADH и ацетил-СоА подавляется <a href="/info/89524">процесс окисления</a> пирувата до ацетил-СоА. ГбФ-глюкозо-б-фосфат ФбФ-фруктозо-б-фосфат ФДФ -фруктозодифосфат ГЗФ - глицеральдегид-З-фосфат ЗФГ - 3-фосфоглицерат 2ФГ-2-фосфоглицерат ФЕП-фос-фоенолпируват а-КГ-а-кетоглутарат.
    Фосфорилирование фермента не отражается на ферментативной активности при pH 8,0. Однако фосфорилирование белка оказывает влияние на аллостерические свойства фермента повышается чувствительность к ингибированию АТФ и цитратом, но снижается чувствительность к активирующему действию АМФ и фруктозо-2,6-дифосфата. Предполагают, что фосфорилирование индуцирует конформацион-ные изменения, способствующие смещению равновесия между двумя формами фермента активной и неактивной. При связывании АТФ в ингибиторном центре также происходит смещение равновесия в сторону неактивной конформационной формы фосфофруктокиназы. [c.238]


    В большинстве клеток метаболические взаимопревращения глюкозо-1-фосфата, глюкозо-6-фосфата и фруктозо-6-фосфата достигают состояния равновесия или сильно приближаются к равновесию. Что же касается фосфорилирования фруктозо-6-фосфата до фруктозо-1,6-дифосфата за счет АТР (рис. 11-11, наверху, в центре), то оно обычно далеко не достигает равновесия. Этот факт был установлен сравнением величины отношения действующих масс [c.511]

    Продолжение процесса - еще одно фосфорилирование с участием АТФ, - снова требует энергии, и к этому моменту уже затрачено 2 моль АТФ. Под влиянием фермента фосфофруктокиназы образуется фруктозо-1,6-дифосфат. Это - ключевая реакция процесса и от ее регуляции зависит скорость всего гликолиза в целом. [c.79]

    Реакция 2 на рис. 9-7 является простой изомеризацией, перемещающей карбонильную группу в положение С-2, в результате чего становится возможным р-расщепление на два трехуглеродных фрагмента. Перед этим расщеплением происходит второе фосфорилирование (реакция 3), приводящее к образованию фруктозо-1,6-дифосфата. Тем самым после расщепления фруктозодифосфата альдолазой в каждой из двух образовавшихся половин оказывается фосфатная группа. Эта вторая затравочная реакция (реакция 3) является первой стадией последовательности, уникальной для гликолиза. Поэтому неудивительно, что [c.336]

    Глюкоза подвергается действию АТФ и превращается в глюко-зо-6-фосфат. Это соединение под влиянием фермента (оксоизоме-разы) перестраивается так, что образуется фруктозо-6-фосфат. Повторное действие АТФ переводит его в фруктозо-1,б-дифосфат. Для этого требуется участие фермента — фосфофруктокиназы. Фермент альдолаза разрывает шестичленную цепь атомов углерода, так что образуются трехуглеродные соединения — фосфогли-цериновый альдегид и фосфодиоксиацетон (он под действием фермента триозофосфатизомеразы переходит в фосфоглицериновый альдегид). Далее на фосфорилированный глицеральдегид воздействует важный фермент — дегидрогеназа. Активная группа этого фермента, переносящая водород, построена по тому же общему типу, по какому построены и фрагменты нуклеиновых кислот она содержит органические основания, остатки углевода рибозы и фосфатную группу и обозначается НАД. [c.367]

    Фруктоза. Установлено, что фруктоза, присутствующая в свободном виде во многих фруктах и образующаяся в тонкой кишке из сахарозы, всасываясь в тканях, может подвергаться фосфорилированию во фруктозо-6-фосфат прп участии фермента гексокиназы и АТФ  [c.335]

    И ступень. В результате присоединения двух остатков фосфорной кислоты углеродная цепь 1,6-фруктозодифосфата расшатывается и под влиянием фермента альдолазы происходит ее разрыв как раз в середине, т. е. между третьим и четвертым атомами углерода. Разрыв в этом месте облегчается тем, что остатки фосфорной кислоты симметрично расположены по концам молекулы фруктозы. При этом фруктозодифосфат распадается на две фосфорилированные триозы фосфодиоксиацетон и 3-фосфоглицериновый альдегид. Этот процесс обратим. [c.549]

    Глюкозо-6-фосфат превращается во фруктозо-6-фосфат (ср. разд. 17.2.1), являющийся исходным соединением гликолиза фруктозы. Образующийся далее в ходе фосфорилирования фруктозо-1,6-дифосфат расщепляется на две молекулы триозо- [c.278]

    Многие исследователи работали над вопросами спиртового брожения. Л. А. Иванов впервые установил в 1903 г. участие фосфорной кислоты в процессах брожения и показал, что стимулирующее действие фосфата сводится к тому, что образуется промежуточное соединение фосфорной кислоты (фосфорные эфиры), способное к дальнейшим превращениям. Этот процесс, получивший название фосфорилирования, является промежуточной стадией брожения. Кроме того, в присутствии неорганических соединений фосфора скорость брожения быстро возрастает. В дальнейшем было установлено, что независимо от того, какой гексозный сахар был взят для брожения, в результате фосфорилирования образуется дифосфат фруктозы. Роль фосфора в этих процессах изучали также английские ученые А. Гарден и Т. Юнг (1905). Они разработали схему спиртового брожения, включающую образование фосфорных эфиров. А. И. Лебедев (1881 — 1938) открыл многие основные этапы спиртового брожения, используя дрожжевой сок, полученный по его методу. Для разделения смеси ферментов А. И. Лебедев применял ультрафильтрацию через желатиновые фильтры. Он совершенно верно определил роль кофермента как передатчика водорода при процессах брожения. В настоящее время установлено, что коферменты состоят из комплекса различных веществ. В результате своих исследований [c.534]

    Основной путь катаболизма углеводов включает в себя гликолиз моносахаридов - О-глюкозы и В-фруктозы, источниками которых в растениях служат сахароза и крахмал. Гликолизом называют расщепление молекулы гексозы на два Сз-фрагмента (схема 11.26). В итоге образуются две молекулы пировиноградной кислоты, а выделяющаяся энергия запасается в двух молекулах АТФ, синтез которых произошел в результате так называемого субстратного фосфорилирования молекул АДФ. Для регенерирования НАД, участвующего в гликолизе, молекулы его восстановленной формы должны отдать полученные от субстрата окисления электрон и протон. В роли их акцептора в обычных для растений аэробных условиях выступает молекулярный кислород. Выделяющаяся при переносе электронов от НАДН к О2 энергия также используется для фосфорилирования АДФ, которое называют окислительным фосфорилирова-нием. Это дает дополнительно еще 4 молекулы АТФ. [c.338]


    В печени, однако, для этого существует другой путь. В ней имеется фермент фруктокиназа, который катализирует фосфорилирование фруктозы не по 6-му, а по 1-му атому углерода  [c.336]

    Показано также, что бифункциональный фермент в свою очередь регулируется путем цАМФ-зависимого фосфорилирования. Фосфорилирование приводит к увеличению фосфатазной активности и снижению фосфокиназной активности бифункционального фермента. Этот механизм объясняет быстрое воздействие гормонов, в частности глюкагона, на уровень фруктозо-2,6-бисфосфата в клетке (см. главу 16). [c.342]

    Рассматривая промежуточный обмен углеводов в печени, необходимо также остановиться на превращениях фруктозы и галактозы. Поступающая в печень фруктоза может фосфорилироваться в положении 6 до фруктозо-6-фосфата под действием гексокиназы, обладающей относительной специфичностью и катализирующей фосфорилирование, кроме глюкозы и фруктозы, еще и маннозы. Однако в печени существует и другой путь фруктоза способна фосфорилироваться при участии более специфического фермента—фруктокиназы. В результате образуется фруктозо-Ьфосфат. Эта реакция не блокируется глюкозой. Далее фруктозо-Ьфосфат под действием альдолазы расщепляется на две триозы диоксиацетонфосфат и глицеральдегид. Под влиянием соответствующей киназы (триокиназы) и при участии АТФ глицеральдегид подвергается фосфорилированию до глицеральдегид-З-фосфата. Последний (в него легко переходит и диоксиацетонфосфат) подвергается обычным превращениям, в том числе с образованием в качестве промежуточного продукта пировиноградной кислоты. [c.555]

    Биохимический смысл первых реакций пути Эмбдена — Мейергофа — Парнаса состоит в унификации субстрата. Процесс может начинаться с различных исходных веществ — глюкозы, фруктозы или глюканов (в. мышцах животных — с гликогена) все эти вещества превращаются рядом последовательных реакций (реакции 1—4) во фруктозо-6-фосфат П .. Фосфорилирование моносахаридов, как и ацилирование карбоновыми кислотами (см. гл. 5), протекает преимущественно по первичному спиртог вому гидроксилу. В соответствии с этим фермент гексокиназа катализирует фосфорилирование глюкозы и фруктозы под действием АТФ до глю-козо-6-фосфата П и фруктозо-6-фосфата П1 (реакции 2, 2 ). [c.366]

    Биохимический смысл последующих стадий пути Эмбдена — Мейергофа — Парнаса (реакции 10—12) заключается в регенерации двух молекул АТФ, которые были затрачены на первых стадиях процесса (фосфорилирование глюкозы и фруктозо-6-фосфата). Эти реакции протекают аналогично реакциям, приведенным в уравнении (В) (см. стр. 365). 3-Фос-фоглицериновая кислота VIII изомеризуется в 2-фосфоглицериновую кислоту I X под действием фосфоглицеромутазы механизм этой реакции аналогичен механизму превращения глюкозо-1"фосфат глюкозо-6-фос-фат. Затем происходит дегидратация 2-фосфогл.ицериновой кислоты IX образовавшаяся фосфоенолпировиноградная кислота X реагирует с АДФ, давая АТФ и пировиноградную кислоту XI,— эта реакция катализируется пируват-киназой. [c.369]

    При лечении воспалительных заболеваний пищеварительного тракта, вызывае-мьпс штаммами ampyloba ter pylori, предложено использовать комплексы висмута с фосфорилированными или сульфатированными углеводами [386]. Способ основан на взаимодействии сульфатированных или фосфорилированных моно-, ди-, три-, тетра-или олигосахаридов (глюкозы, сахарозы, арабинозы, фруктозы, рибозы, лактозы, мальтозы и щ).) с гидроксидом висмута или его солями в воде или органических растворителях. [c.301]

    I ступень характеризуется образованием фосфорилированных сахаров. Процесс начинается с присоединения к гексозе (глюкоза, фруктоза, манноза) радикала фосфорной кислоты, в результате образуются эфиры фосфорной кислоты и гексозы. Реакция присоединения остатка фосфорной кислоты к гексозе носит название фосфорилирование. [c.548]

    Молекула глюкозо-б-фосфата изомеризуется в молекулу фрук-тозо-6-фосфата. Последний фосфор ил ируется в положении 1. Донором фосфата служит АТФ. Вторичное фосфорилирование молекулы фруктозы приводит к ее дальнейшему активированию. [c.212]

    Следовательно, в равновесной смеси концентрация 1ииокозо-б-<1эосфата примерно в два раза превышает конн,ентрацию фруктозо-6-с1юсфага. Для реакции фосфорилирования глюкозы, протекающей по реакции [c.340]

    Фосфорилирование фруктозо-6-< эосфата до фруктозо-1,6-дифосфата, катализируемое б-фосфофруктокиназой  [c.346]

    Необратимая реакция фосфорилирования фруктозо-6-фосфата молекулой АТФ до фруктозо-1,6-дифосфата, катализируемая ферментом фосфофрук-токиназой  [c.244]

    Указывают, что биохимические процессы не идут в гомогенных водных растворах, так как активный энзим нельзя отделить от всей коллоидальной молекулы протеина, и что окисляющийся субстрат должен сперва адсорбироваться на поверхности коллоида и подойти совершенно точно, как ключ к замку, к специфическим простетическим группам. В таком случае оказывается возможным аккумулирование теплоты реакции, выделяющейся в отдельных стадиях реакции, на каталитически активных центрах в достаточном количестве, обеспечивающем протек(ание эндотермических изменений, которые являются отдельными составляющими суммарного экзотермического процесса. Так, например, по данным Кребса , биохимический синтез мочевины, включающий превращение орнитина в аргинин, обязательно увеличивает энергию примерно на 14 ккал на г-молекулу. Этот эндотермический процесс может итти только вместе с экзотермическим окислением. Поскольку синтез аргинина ускоряется в присутствии таких веществ, как глюкоза, фруктоза, молочная кислота и пировиноградная кислота, предполагается, что одновременное окисление этих веществ дает энергию для синтеза мочевины. Существенную роль в регулировании изменений энергии при ступенчатом окислении сахаров могут играть реакции фосфорилирования и дефосфорилирования На стр. 297 было указано, что фосфорилирование может сопровождать де-карбоксилирование. При последующем гидролизе смешанного ацилфосфорного ангидрида может освобождаться не менее [c.301]

    Дифосфат фруктозы, или 1,6-фруктозодифосфат (1,6-фруктозодифос-форная кислота), был открыт почти одновременно Л. А. Ивановым и Харденом и Юнгом. Этот эфир образуется в животных и растительных тканях путем фосфорилирования 6-фосфата фруктозы аденозинтрифосфорной кислотой. 1,6-Дифосфат фруктозы является наиболее лабильным из описанных фосфорнокислых эфиров гексоз, так как и в биологических условиях и при действии разбавленных шелочей он легко расщепляется с образованием молекул с тремя углеродными атомами. 1,6-Фрукюзодифосфорная кислота имеет восстанавливающие свойства. Ее удельное вращение [а]д = -ЬЗ,4° [c.662]

    Процесс фосфорилирования глюкозы и фруктозо-6-фосфа-та сопровождается потлощением химической энергии, освобождаемой при разрыве макроэргической связи в моле1КУле АТФ. [c.165]

    Гексокиназа присутствует почти во всех клетках-животных, растительных и бактериальных. Она катализирует фосфорилирование не только D-глюкозы, но и некоторых других обычных гексоз, например D-фруктозы и D-маннозы. Гексо-киназу удалось вьщелить из дрожжевых клеток в кристаллическом виде, и ее трехмерная структура была детально изучена методом рентгеноструктурного анализа. Связывание гексокиназы с гексозой происходит по типу индуцированного соответствия молекула фермента претерпевает при этом глубокое конформационное изменение (см. рис. 12 и 13 к дополнению 9-4). Для проявления активности гексокиназе необходимы ионы Mg , поскольку истинным субстратом для этого фермента служит не АТР , а комплекс MgATP " (разд. 14.8). [c.446]

    Измерение внутриклеточных концентраций метаболитов. Измерение концентраций промежуточных продуктов метаболизма в живой клетке сопряжено с большими экспериментальными трудностями. Поскольку клеточные ферменты катализируют быстро протекающие метаболические превращения, одна из обычных проблем при всяком экспериментальном вмешательстве в жизнь клетки связана с тем, что данные, полученные путем измерений, отражают не физиологические, а равновей1ые концентрации метаболитов. Поэтому любая экспериментальная методика будет надежной лишь в том случае, если с ее помощью удастся мгновенно подавить все ферментативные реакции в интактной ткани и тем самым предотвратить дальнейшие превращения промежуточных продуктов метаболизма. Этой цели можно достичь путем быстрого сжатия ткани между большими алюминиевыми пластинами, охлажденными жидким азотом ( —190°С) такой прием носит название фиксация замораживанием . После замораживания, мгновенно подавляющего действие ферментов, ткань растирают в порошок и ферменты инактивируют путем осаждения хлорной кислотой. Осадок удаляют центрифугированием, а прозрачную надосадочную жидкость анализируют на содержание в ней метаболитов с помощью специфических ферментативных тестов. Истинную концентрацию данного метаболита в клетке определяют расчетным путем, учитывая общее содержание воды в ткани и данные измерений объема внеклеточного пространства, В табл. 1 приведены кажущиеся внутриклеточные концентрации субстратов и продуктов реакции фосфорилирования фруктозо-6-фосфата, катализируемой фер- [c.474]

    Скорость гликолиза в нормальных условиях согласована со скоростью функционирования цикла лимонной кислоты в клетке до пирувата расщепляется ровно столько глюкозы, сколько необходимо для того, чтобы обеспечить цикл лимонной кислоты топливом , т. е. ацетильными группами ацетил-СоА. Ни пируват, ни лактат, ни ацетил-СоА обычно не накапливаются в аэробных клетках в больших количествах их концентрации поддерживаются на некоем постоянном уровне, соответствующем динамическому равновесию. Согласованность между скоростью гликолиза и скоростью функционирования цикла лимонной кислоты объясняется не только тем, что первый процесс ингибируется высокими концентрациями АТР и NADH, т.е. компонентами, общими для гликолитической и дыхательной стадий окисления глюкозы определенную роль в этой согласованности играет также и концентрация цитрата. Продукт первой стадии цикла лимонной кислоты-цитрат-является аллостерическим ингибитором фосфофруктокиназы, катализирующей в процессе гликолиза реакцию фосфорилирования фруктозо-6-фосфата (разд. 15.13 и рис. 15.15). [c.495]


Смотреть страницы где упоминается термин Фруктоза фосфорилирование: [c.144]    [c.93]    [c.463]    [c.337]    [c.554]    [c.555]    [c.348]    [c.397]    [c.216]    [c.426]    [c.576]    [c.450]    [c.447]   
Биологическая химия Изд.3 (1998) -- [ c.335 , c.336 ]

Биохимия растений (1968) -- [ c.125 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфорилирование

Фруктоза

Фруктоза Л Фруктоза

Фруктозаны



© 2025 chem21.info Реклама на сайте