Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Число тройных столкновений

    Полученное выражение находит применение ири изучении тримолекулярных реакций особенно важно, что число тройных столкновений пропорционально произведению концентраций трех видов сталкивающихся молекул. [c.116]

    Введение добавок неона в реакционную систему показало зависимость отношения констант скорости рекомбинации и диспропорционирования от давления инертного газа. Изучение этого влияния в широких пределах вместе с тем выявило, что отношение констант зависит от числа тройных столкновений, скорости диффузии радикалов к стенкам реакционного сосуда и избытка энергии, сохраняемой радикалами от начальной фотодиссоциации. При учете действия указанных факторов достигается согласие результатов, полученных для различных способов образования радикалов, и предполагается, что они являются ответственными за разброс значений величины отношения констант в прежних работах. [c.227]


    Еще М. В. Ломоносов указывал, что реагируют только сталкивающиеся молекулы. Число столкновений молекул данного вещества А с молекулами других реагирующих веществ пропорционально концентрации молекул А, число тройных столкновений двух молекул вещества А с молекулой другого компонента пропорционально квадрату концентрации и т. д. Поэтому, если бы реакция протекала в одну элементарную стадию, в едином соударении всех реагирующих молекул, ее скорость должна была бы быть пропорциональной концентрации реагирующих веществ в степени их стехиометрических коэффициентов. [c.237]

    Для расчета числа тройных столкновений используют положения теории бинарных столкновений. Столкновение трех частиц [c.752]

    Не будем приводить точных формул для числа тройных столкновений, так как они сложны и не общеприняты. Разберем только зависимость от концентрации или давления. [c.279]

    На основе газокинетической теории двойных столкновений нетрудно найти число тройных столкновений в единицу времени в единице объема. Согласно Штейнеру [1540], вычисление можно провести следующим образом. Сначала нужно найти число неустойчивых двойных комплексов, образующихся в единицу времени (в единице объема) в результате столкновения двух молекул, а затем вычислить число столкновений этих двойных комплексов с третьей молекулой. [c.261]

    Рассмотрим столкновение частиц Л+В+С. Из сказанного ясно, что это столкновение надо рассматривать как столкновение комплекса АВ с С или комплекса ВС с А. Вероятность образования двойного комплекса пропорциональна концентрациям (давлениям) образующих его молекул. Вероятность столкновения этого комплекса с частицей С в свою очередь пропорциональна их концентрациям. Таким образом, для числа тройных столкновений получим [c.279]

    Отсюда находим, что отношение числа тройных столкновений к числу двойных [c.263]

    Т. е. число тройных столкновений пропорционально кубу давления. [c.279]

    Поскольку тройные столкновения пропорциональны кубу, а двойные квадрату давления, то отношение числа тройных столкновений, приводящих к обрыву, к числу двойных столкновений, приводящих к разветвлению, будет равно [c.321]

    Число тройных столкновений [c.261]

    Предыдущий расчет числа тройных столкновений, как и формула (22.2), очевидно, относятся также и к рассмотренным в 21 реакциям присоединения и рекомбинации. В работах различных авторов энергия активации заключается между значениями —0,95 и —1,75 ккал. . [c.263]

    В области давлений ниже F или ниже Р скорость обрыва цепей в объеме по реакции (V,35) практически равна нулю, поскольку при низких давлениях число тройных столкновений в 1 л за 1 сек ничтожно мало. В этой области давлений (Р Ру) конкурируют между собой реакции (V,33) и (V,37). Причем, как видно [c.218]


    В жидкой фазе, где концентрация вещества очень высока и велико число тройных столкновений, большую роль в образовании свободных радикалов могут играть тримолекулярные реакции. В жидкофазном [c.81]

    Такого рода тройные соударения играют в. химии большую роль, но они сравнительно редки в обычных условиях (при атмосферном давлении и комнатной температуре) число тройных столкновений в газе, как это можно вычислить, раз в 100 меньше, чем число бимолекулярных столкновений. [c.59]

    Для простейшей оценки числа тройных столкновений в газовой смеси можно принять, что это число во столько же раз меньше числа двойных столкновений, во сколько раз диаметр молекулы меньше средней длины свободного пробега (Боденштейн). Различные [c.130]

    Легко видеть, что автор вычисляет не число тройных столкновений, а число двойных столкновений между молекулами реагирующих веществ, которое составляет при сделанных упрощениях долю, равную в/Лд от числа столкновений молекул А с растворителем. [c.211]

    ЧИСЛО ТРОЙНЫХ СТОЛКНОВЕНИЙ [c.130]

    Число тройных столкновений.......... [c.383]

    Полученное выражение применяется при изучении тримолекулярных реакций. Особенно важно, что число тройных столкновений пропорционально произведению концентраций трех типов сталкивающихся молекул. В кинетике важное значение имеет тройное столкновение типа [c.143]

    При возрастании температуры равновесие сдвйгаетсй в сторону исходных веществ, и скорость реакции падает за счет уменьшения концентрации молекул NO I2. Качественно этот же результат получается и при рассмотрении зависимости числа тронных столкновений от температуры с ростом температуры возрастает скорость сталкивающихся молекул озав и уменьшается время жизни сталкивающейся пары тав. Таким образом, число тройных столкновений должно несколько уменьшаться с температурой. Однако теоретические расчеты не совпадают с опытными данными. [c.177]

    Была сделана попытка улучшить результат, получаемый по формуле для числа тройных столкновений, путем учета взаимодействия между молекулами, В данном случае это вопрос существенный, поскольку при наличии притяжения между молекулами может значительно возрасти время жизни сталкивающейся пары, что, естественно, приведет к увеличению числа тройных столкновений. Кроме того, с увеличением температуры роль нзаимодейстаия уменьшается, что не может не отразиться на зависимости скорости от температуры. Если принять модель молекулы шаровой с центральным сферическим силовым полем, то, как уже отмечалось, взаимодействие можно учесть путем умножения соответствующих формул для идеального газа на множитель предложенный Сезерлендом (где фо —некоторая постоянная, связанная с энергией взаимодействия). Тогда число 1ройиых соударений [c.177]

    Скорость тримолекулярныА реакций определяется числом тройных столкновений реагирующих молекул в единицу времени. В основе расчета числа тройных столкновений 2двс между частицами А, Б и С лежит представление о том, что оно определяется числом двойных столкновений каждого партнера X (X = А, Б, С) с неустойчивым комплексом образованным из других партнеров ( 2 = ВС, АС, АВ) [124]. Обозначая концентрацию этих комплектов через пу2, а концентрацию свободных частиц через Их будем иметь [c.132]

    Боденштейн [76], первоначально полагавший, что окисление N0 кислородом — элементарный тримолеку-лярный процесс, объяснял температурную зависимость константы скорости 3-го порядка, исходя из предположения о том, что с ростом температуры снижается число тройных столкновений Z. [c.50]

    Ошибочность этого предположения была доказана Толманом [148], рассчитавшим Z на основе простой газокинетической теории. Согласно Толману, т. е. число тройных столкновений слабо растет с ростом температуры. [c.50]

    Кассель [149] попытался улучшить выводы газокинетической теории на основании учета межмолекуляр-ных взаимодействий в реальном газе. Им получена отрицательная температурная зависимость для числа тройных столкновений (рис. 1.3). Имеется, однако, серьезное возражение против теории Касселя, которая предсказы-. вает влияние инертных газов на кинетику взаимодействия N0 и О2, что находится в противоречии с экспериментальными данными. [c.50]

    В области низких температур реакция ускоряется в присутствии таких неспецифических катализаторов, как древесный уголь, силикагель и алюмогель, обладающих высокими адсорбционными свойствами. Кажущаяся энергия активации на этих катализаторах имеет отрицательное значение. Согласно Борескову и Шогам [105], повы-щение скорости окисления N0 кислородом в присутствии указанных катализаторов вызвано или ростом числа тройных столкновений, или повышением количества димерных молекул N2O2 в адсорбированном слое. Катализ такого типа может быть назван физическим [ИЗ]. [c.69]

    Константа скорости Т. р. выражается произведением числа тройных столкновений Z , стерич. фактора Р и аррениу-совското множителя ехр(—E/RT), где Е — энергия активации, R — газовая постоянная, Т — т-ра. Значение Z< определяется числом столкновений каждой из частиц А, В и С с нестабильной парой, образованной двумя другими частицами (ВС, АС и АВ соотв.). Если нестабильная пара образована атомами, ее время жизни г 10 с и для частиц средних мол. масс нри 300 К составляет 10 —10 см - молекула с Ч Однако если нестабильная пара образована двумя радикалами, т м. б. заметно больше 10 с. [c.593]


    Д /з — число реакций обрыва цепей на стенках (или других твердых поверхностях), отне-сеппое к числу реакций распространения цепей, а /с — ч ело реакций обрыва цепей прп гомогенных тройных столк-ыовениях, отнесенное к числу реакций распространения цепи. При заданной температуре и заданном начальном составе реагирующей смеси величина должна увеличиваться с увеличением давления из-за роста числа тройных столкновений в единицу времени, тогда как величина /з должна уменьшаться с увеличением давления (в случае газа в сосуде) из-за уменьшения скорости диффузии к стенкам (связанного с уменьшением коэффициента диффузии, см. Дополнение Д). Таким образом, возможно, что величина / и, следовательно, левая часть неравенства (35), с ростом давления сначала уменьшается, а затем увеличивается. Поэтому при соответствующих условиях с увеличением давления значение левой части неравенства (35) может изменяться от положительных до отрицательных и снова до положительных значений. Такое поведение может объяснить вид нижней части показанной на рис. 1 экспериментальной предельной кривой для взрыва с разветвленными ценными реак- [c.492]

    Реакции III порядна. Эти реакции также обнаруживают некоторые особенности, заслуживающие специального рассмотрения. Число тройных столкновений очень мало (примерно в 1 ООО раз меньше, чем двойных). Для того чтобы такие реакции шли с заметной скоростью, они должны иметь очень малые энергии активации. Это в свою очередь должно приводить к очень малым увеличениям скоростей с температурой. Действительно, температурные коэфициенты скоростей реакций III порядка очень малы. [c.448]

    Реакция 2NO О2 = 2NO2 имеет в отличие от других отрицательный температурный коэфициент скорости (константа последней падает в 3 раза при нагревании от комнатной температуры до 400° С). Это было объяснено Траут-цем (1924) следующим образом. Сначала происходит столкновение двух молекул, которые через некоторое время снова распадаются ввиду повышенного содержания энергии. Если третья молекула успевает подойти раньще, чем распались первые две, то реакция осуществляется. При повышении температуры растет число соударений, но растет также и скорость распадения двойных молекул. Если последний фактор преобладает, то скорость реакции уменьшается при нагревании. Описанный механизм применим вероятно ко всем реакциям Ш порядка. Он приводит к величинам для в (109), представляющим число тройных столкновений в две стадии, которые хорошо отвечают наблюдаемым скоростям. [c.449]

    Теория собственно тримолекулярных реа1кций основана на подсчете числа тройных столкновений. Оно нами было вычислено в гл. VI и записано в форме ( 1.48). Скорость реакции по аналогии с бимолекулярными реакциями запишем в таком виде  [c.180]

    Здесь будет рассьютрена элементарная теория столкновений для тримолекулярных реакций, основанная на числе тройных столкновений. Оно нами было вычислено выше (гл. 6) и записано в форме  [c.187]


Смотреть страницы где упоминается термин Число тройных столкновений: [c.51]    [c.142]    [c.262]    [c.274]    [c.251]    [c.131]    [c.211]    [c.32]    [c.28]   
Смотреть главы в:

Химические процессы в газах -> Число тройных столкновений

Кинетика и механизм газофазных реакций -> Число тройных столкновений

Кинетика химических газовых реакций -> Число тройных столкновений

Основы химической кинетики Издание 2 -> Число тройных столкновений

Кинетика и механизм газофазных реакций -> Число тройных столкновений




ПОИСК





Смотрите так же термины и статьи:

Столкновения



© 2024 chem21.info Реклама на сайте