Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции дегидроциклизации с образованием новой С—С-связи

    ЮМ связи углерод-сера (крекинг), с образованием новой связи углерод— углерод (дегидроциклизация) и реакции окисления. [c.126]

    РЕАКЦИИ ДЕГИДРОЦИКЛИЗАЦИИ С ОБРАЗОВАНИЕМ НОВОЙ С—С-СВЯЗИ [c.283]

    В этой конформации две группы атомов водорода по обе стороны плоскости кольца сближены по направлению к центру молекулы и конформационно взаимодействуют между собой. Благодаря этим взаимодействиям в молекуле создается дополнительное внутреннее напряжение. При этом сближение двух Н-атомов приводит к перекрыванию их ван-дер-ваальсовых радиусов. Удаление этих сближенных атомов и образование новой С—С-связи уменьшает энергию системы, делая ее менее напряженной. Указанные стерические факторы и энергетический эффект благоприятствуют протеканию трансаннулярной Сз-дегидроциклизации циклооктана с образованием системы пенталана. Протекание этой реакции в присутствии Pt/ осуществляется, как нам кажется, через промежуточное образование циклического переходного состояния. Образование последнего происходит, по-видимому, по схеме, сходной с механизмом гидрогенолиза циклопентанов и Сз-дегидроциклизацни алканов (для упрощения схемы на ней не показаны атомы катализатора, соединенные со сближенными атомами Н и С адсорбционными связями)  [c.155]


    Существенное влияние на процессы крекинга и гидрирования парафинов оказывают катализаторы. Особенно сильным расщепляющим действием обладают вольфрамовые и молибденовые катализаторы, а катализаторы, полученные на основе оксида хрома, хроммедьфосфорные и платинированный уголь направляют реакции распада в сторону образования ароматических углеводородов и циклопарафинов. Этот весьма важный процесс дегиДроциклизации (циклизация с одновременным дегидрированием) был впервые открыт советскими учеными Б. Л. Молдавским, Б. А. Казанским, А. Ф. Платэ и В. И. Кар-жевым в 1936 г. При дегидроциклизации образуется одна новая связь С—С и не изменяется число атомов в углеродной цепи. В простейшем случае ароматический цикл может быть образован на основе парафинового углеводорода, содержащего в цепи [c.165]

    В работе [32] проведено сравнительное исследование каталитической активности металлического хрома,а также карбидов СгдС2 и Сг,Сд при ароматизации к-гексана ик-октана. Было обнаружено отсутствие каталитической активности у хрома и ароматизирующая способность у обоих карбидов хрома, причем Сг Сз оказался более активным. Отсутствие каталитической активности у хрома может быть связано с тем обстоятельством,что,несмотря на наличие у хрома формально средней по величине акцепторной способности, при окружении его соседними атомами в кристаллической решетке металла осуществляется образование стабильной конфигурации Принятие я-электронов,например водорода в реакциях дегидрогенизации,при этом сильно затруднено или вообще невозможно, что и показано на опыте [33] значительно легче может происходить отдача х-электронов и появляться каталитическая активность в соответствующих реакциях. При образовании карбидов хрома эта стабильная конфигурация нарушается и происходит донорно-акценторное взаимодействие между атомами хрома и углерода, которое сводится к передаче внешних (главным образом 4 ) электронов хрома на коллективизацию с р-электронами углерода. При этом в связи с относительно небольшой величиной для хрома и высоким ионизационным потенциалом атомов углерода вероятен не только переход х-электро-нов хрома в направлении остова атома углерода, но и частичное нарушение 3( -конфигурации с соответственным повышением акцепторной способности хрома. С повышением относительного содержания углерода в карбидных фазах хрома увеличивается вероятность образования связей между атомами углерода (что следует также из усложнения структурных мотивов атомов углерода при увеличении отношения С/Сг), которые стремятся в пределе к образованию устойчивой конфигурации типа характерной для алмаза (что эквивалентно резкому повышению ионизационного потенциала атомов углерода), и в конечном счете ко все большей возможности нарушения 3 -конфигурации атомов хрома. Это вызывает резкий рост каталитической активности при переходе от хрома к его карбидам, в которых атомы углерода образуют цепи. В случае окиси хрома, вследствие высокого ионизационного потенциала кислорода, коллективированные электроны хрома и кислорода резко смещены в направлении атомов кислорода, что содействует нарушению устойчивой конфигурации -электронов хрома, повышает акцепторную способность его остова и вызывает высокую каталитическую способность окиси хрома, например в реакциях типа дегидроциклизации парафиновых углеводородов. Исходя из этого окислы вообще должны обладать относительно высокими каталитическими свойствами, особенно низшие окислы переходных металлов, так как высшие окислы, как правило, являются полупроводниками с большой шириной запрещенной зоны, затрудняющеь электронные переходы. Последнее относится и к некоторым другим тугоплавким фазам в областях их гомогенности, когда при уменьшении содержания неметалла в пределах этих областей появляются энергетические разрывы, как это происходит, например, для нитридов титана и циркония [33—35]. [c.243]


    Экспериментальные данные показали, что преобладающее количество ( 96% вес.) пропущенного над катализатором циклононана подверглось превращению. В продуктах реакции было найдено —68% индана, — 22% 1-метил-2-этилбензола, —2% к-пронилбензола и —7% к-нонана. Образование индана, главного продукта каталитических превращений циклононана над платинированным углем, можно объяснить каталитической дегидроциклизацией циклононана в гидриндан, который в условиях опыта далее дегидрируется в индан. Возможность возникновения новой связи внутри девятичленного цикла между первым и пятым углеродными атомами, по-видимому, связана с пространственным расположением углеродных атомов молекулы циклононана. 1-Метил-2-этилбензол и к-пропил-бензол, обнаруженные в катализате, получились в результате дальнейших превращений индана. Известно [41, что как индан, так и гидриндан при проведении над платинированным углем ири 300° С претерпевают гидрогенолиз нятичленного цикла и превращаются в 1-метил-2-этилбен-зол. Наличие в катализате некоторого количества к-пропилбензола свидетельствует о том, что при гидрогенолизе пятичленного цикла в индане разрыву подвергается не только углерод-углеродная связь, отстоящая через один углеродный атом от бензольного кольца, но и связь, соседняя с бензольным кольцом, хотя и в меньшей мере. Обнаруженный в катализате к-нонан свидетельствует о том, что циклононан, так же как и циклодекан, [c.429]

    Научные исследования связаны с разработкой основ нефтехимии и каталитического превращения углеводородов. Им и его учениками открыты новые каталитические реакции образования циклических углеводородов, различные каталитические превращения цикланов. Установил закономерности гидрогенизации и дегидрогенизации углеводородов, синтезировал образцы новых углеводородов высокой чистоты. Совместно с Н. Д. Зелинским и Л. Ф. Платэ открыл (1934) каталитическую реакцию селективного гидрогенолиза циклопентано-вых углеводородов в атмосфере водорода на платиновом катализаторе с разрывом только одной из пяти углерод-углеродных связей. В дальнейшем открыл гидро-генолиз других цикланов с 3—15 атомами углерода в кольце. Совместно с А. Ф. Платэ открыл (1936) реакцию Се-дегидроциклизации, или ароматизации, парафиновых угле- водородов. Совместно с сотрудниками открыл (1954) реакцию Сб-дегидроциклизации. Установил механизм каталитических превращений гем-двузамещенных цикло-гексанов и сииранов на платиновом катализаторе, а также каталитических превращений цикланов с 7-членными циклами. Установил (с [c.215]

    Можно заметить, что структуры ориентированы к поверхности контакта в рассматриваемых случаях параллельно или перпендикулярно. Это симптоматично. В ряде опубликованных забот учитываются и конформацион-ные взаимодействия между реагирующими на катализаторе молекулами, поэтому можно сказать, что стереохимическпе идеи органической химии все более проникают в теории органического катализа. Конформационная теория привела в последние годы к прогрессу в органической химии, и можно надеяться, что два названных выше направления — изучение поверхностных форм и стереохимии катализа — станут основой новых широких обобщений. Авторы доклада склонны рассматривать будущее теории катализа оптимистически. Однако момент для единых взглядов еще не настал, а потому механизмы активирования в данном докладе рассматриваются для конкретных реакций гидрирования, дегидрирования, миграции двойной связи, гидрогенолиза углеводородных циклов от пяти- до пятнад-цатичлепного, дегидроциклизации углеводородов с открытой цепью с образованием пяти- и шестичленных циклов, конфигурационной изомеризации диалкилцикланов и диспропорционирования олефинов. Большинство этих реакций в той или иной степени осуществляется в ходе различных процессов нефтепереработки. [c.45]

    Ранее нами было показано 11), что прп 310° С в присутствии платинированного угля парафины, алкилбензолы и алкилциклопентаны претерпевают Сй-дегидроциклизацию, т. е. нх прямая углеродная цепочка замыкается с образованием пятичленного кольца. Иигоресно было выяснить, ограничивается ли эта реакция углеводородами или же в нее могут вступать и соединения другого состава, в том числе с гетероатомами в замыкающейся цепочке, например диалкиламины. В этом случае можно было бы ожидать, что образо-ванае новой С—С-связи приведет к пирролидчнам [c.173]

    Исследования связаны с разработкой основ нефтехимии и каталитического превращения углеводородов. Им и его учениками открыты новые каталитические р-ции образования циклических углеводородов, различные каталитические превращения цикланов. Установил закономерности гидрогенизации и дегидрогенизации углеводородов, синтезировал новые углеводороды высокой чистоты. Совм. с Н. Д. Зелинским и А. Ф. Платэ открыл (1934) каталитическую р-цию селективного гидрогенолиза циклопеитано-вых углеводородов в атмосфере водорода на платиновом катализаторе с разрывом только одной из пяти углерод-углеродных связей. Совм. с А. Ф. Платэ открыл (1936) рсакци ю Се,-дегидроциклизации (ароматизации) парафиновых углеводородов. Совместно с сотр. открыл (1954) реакцию Сг,-дегидро-циклизации. Установил (1950) правила гидрогенолиза и изомеризации Си- и С,1-циклоалканов, а также закономерности гидрирования этилена и его гомологов различной степени алкилирования. Нап1ел новые пути и оптимальные условия осуществления различных р-ций каталитической полимеризации и термического превращения углеводородов при высоком давлении. Исследовал (1946— 1960) состав бензиновых фракций нефтей различных месторождений. Создал большую школу химиков. [c.187]



Смотреть страницы где упоминается термин Реакции дегидроциклизации с образованием новой С—С-связи: [c.56]    [c.46]    [c.72]    [c.209]    [c.254]    [c.187]   
Смотреть главы в:

Химия и технология ароматических соединений в задачах и упражнениях -> Реакции дегидроциклизации с образованием новой С—С-связи

Химия и технология ароматических соединений в задачах и упражнениях Издание 2 -> Реакции дегидроциклизации с образованием новой С—С-связи




ПОИСК





Смотрите так же термины и статьи:

Дегидроциклизация

Дегидроциклизация с образованием

Реакции образования связей

Реакция дегидроциклизации



© 2025 chem21.info Реклама на сайте