Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакция дегидроциклизации

    Схему реакций дегидроциклизации н —гептана можно представить и в следующем виде  [c.181]

    Реакция дегидроциклизации нормального гексана  [c.95]

    Е качестве примера можно привести реакцию дегидроциклизации н —гексана СбН = С,Н. + ЗН,, для которой Д2, = + ЗД2 - . [c.10]

    Глава V. Реакции дегидроциклизации..... [c.4]

    Механизм отравления Pt-катализатора в ходе превращений 3-метилпентана исследован с помощью изотопных методов [117]. Показано, что в ходе протекания реакций Сз-дегидроциклизации и изомеризации происходит необратимое удерживание части молекул углеводорода на катализаторе, следствием чего является селективное отравление активной поверхности катализатора. Предполагают, что реакции Сз-дегидроциклизации и изомеризации алканов протекают на участках поверхности Pt-черни, представляющих собой определенную геометрическую комбинацию атомов металла. При этом из участия в реакциях дегидроциклизации — изомеризации выводится весь активный центр, если этому предшествует хотя бы частичное блокирование атомов в ансамбле. В то же время реакция дегидрирования может успешно протекать на оставшейся незанятой части ансамбля. В соответствии с этим на рис. 42 изображены возможная схема хемосорбции 3-метилпентана при его Сз-дегидроциклизации и схема хемосорбции метилциклопентана при гидрогенолизе на грани Pt (111) [118]. Таким образом становится очевидным определенное сходство в строении промежуточных комплексов реакций Сз-дегидроциклизации алканов, гидрогенолиза циклопентанов и изомеризации алканов [63, 82, 101, 118]. [c.224]


    Открытие новых реакций на платиновом катализаторе— реакции гидрогенолиза циклопентановых углеводородов Н. Д. Зелинским, Б. А. Казанским и А. Ф. Платэ [13], реакции дегидроциклизации парафиновых углеводородов Б. А. Казанским и А. Ф. Платэ [14] и дальнейшее плодотворное развитие этих реакций в исследованиях Б. А. Казанского н его [c.163]

    В основе промышленных способов получения ароматических углеводородов и высокооктановых бензинов лежат реакции С5- и Се-дегидроциклизации алканов. Широко дискутируемым в настоящее время является вопрос о путях превращения алканов в бензол и его гомологи. В настоящее время он перерос академические рамки и важен как для химиков-технологов, так и для специалистов в области приготовления катализаторов. Важное значение приобрел в последние несколько лет вопрос об участии водорода в реакциях дегидроциклизации (или активирования им катализаторов дегидроциклизации).  [c.7]

    Принципиальная схема процесса приведена на рис. 10. Установка имеет четыре сферических реактора с внутренней тепловой изоляцией. В процессе магнаформинга предусматривается селективное превращение отдельных групп углеводородов при работе реакционной зоны в оптимальных условиях по количеству загружаемого катализатора, температуре и мольному отношению водород сырье. В первых реакторах установки осуществляют в основном реакции дегидрирования нафтеновых углеводородов, в последнем реакторе — реакции дегидроциклизации парафиновых углеводородов. [c.37]

    V.3. Роль водорода в реакциях дегидроциклизации [c.4]

    В работе [123] обсуждаются условия, в которых проявляется положительное и ингибирующее влияние водорода на реакции дегидроциклизации, гидрогенолиза, скелетной изомеризации и D—Н-обмена в присутствии Pt- и Ni-катализаторов. Показано, что скорость и направление превращений углеводородов, катализируемых металлами, зависят от содержания водорода в системе. Небольшие количества адсорбированного на поверхности катализатора водорода положительно влияют на превращение углеводородов (см. рис. 43). Так, водород, по мнению авторов [123], замедляет процесс диссоциативной хемосорбции углеводородов на поверхности металла  [c.228]

    Роль реакций дегидроциклизации в каталитическом риформинге необычайно велика в связи с превращением нри этом некоторых наиболее низкооктановых компонентов в высокооктановые ароматические углеводороды. Реакция протекает со значительным изменением плотности углеводородного сырья, теоретические объемные выходы колеблются от [c.167]


    Наряду с разнообразным сырьем были испытаны многочисленные катализаторы. Некоторые наиболее удачные катализаторы реакций дегидроциклизации перечислены ниже. [c.168]

    Особенность процесса риформирования, как было показано выше, состоит в том, что основные реакции риформинга сопровождаются значительным увеличением объемов и протекают, как правило, с интенсивным поглощением тепла. Так, при реакции дегидрогенизации нафтенов объем продуктов реакции увеличивается в четыре раза (выделяются три моля водорода) и поглощается теплоты 221 Дж/моль, при реакции дегидроциклизации парафинов объем возрастает в пять раз и поглощается 260 кДж/моль (см. 2.2). Указанные особенности оказывают существенное влияние на конструктивное оформление и их необходимо учитывать при выборе технологических параметров процесса. [c.13]

    Мышьяк двойственно влияет на катализатор — в концентрации 0,001% избирательность и активность катализатора незначительно увеличиваются, но повышение концентрации мышьяка до 0,1% снижает активность (в реакциях дегидроциклизации) и октановое число бензина. [c.20]

    Данные табл. УИ-9 показывают, что практически нацело при 500 С и 1 атм протекают реакции крекинга, дегидрирования шестичленных нафтенов, гидрокрекинга. Давление оказывает наибольшее влияние на глубину превращения для реакции дегидроциклизации. Для некоторых веществ (например, циклогексана) дегидрирование при 40 атм уже не протекает нацело. [c.211]

    Основная цель введения хлорида заключается в сохранении активности кислотных центров, имеющихся в структуре катализатора. Кислотные центры катализируют протекание реакций дегидроциклизации и изомеризации, приводящих к образованию желаемых компонентов, но наряду с этим ката-лизуют также нежелательные реакции деалкилирования (крекирования). [c.42]

    Б присутствии платинового катализатора возможны два механизма реакции дегидроциклизации  [c.484]

    Давление. Парциальное давление при риформинге существенно влияет на результаты процесса. Снижение рабочего давления при- водит к значительному увеличению глубины ароматизации парафиновых углеводородов (табл. 14) [131. Так, при снижении давления с 2,5 МПа до 1,5 МПа глубина ароматизации возрастает (при 510 °С) с 38,3% до 47,7% и главное, при снижении давления селективность превращений парафиновых углеводородов возрастает, что связано с изменением соотношения скоростей реакций, дегидроциклизации и гидрокрекинга (снижение давлений благоприятствует протеканию первых и тормозит вторые). [c.24]

    При ужесточении режима риформинга все более значительную роль в образовании циклических соединений приобретает реакция дегидроциклизации парафинов  [c.62]

    В 1927 г. X. И. Арешидзе становится студентом естественного отделения педагогического факультета Тбилисского государственного университета. В 1936 году он поступает в аспирантуру Московского государственного университета им. Ломоносова по специальности — органическая химия. Кафедрой органической химии руководил выдающийся советский ученый академик Николай Дмитриевич Зелинский. В то время основным направлением кафедры было изучение двух новых реакций дегидроциклизации парафиновых и гид-рогенолиза циклопентановых углеводородов. Этими исследованиями впервые было показано, что малореакционноспособные углеводороды можно превратить в высокореакционноспособные. [c.5]

    Естественно, что научная работа аспиранта этой кафедры X. И. Арешидзе была в основном посвящепа этой проблеме. Им был исследован палладиевый катализатор в реакциях дегидроциклизации парафиновых и гидрогенолиза циклопентановых углеводородов. Результаты этих исследований, наряду с другими, легли в основу кандидатской диссертации X. И. Арешидзе, которую он защитил в Московском государственном университете в 1940 году. [c.5]

    Следует подчеркнуть, что секстетно-дублетная модель гидрогенолиза, предложенная [124] для самого циклопентана, в дальнейшем была успешно распространена на MOHO-, ди- и полиалкилциклопентаны [143, 156—158], циклогептаны [159], а также на реакцию Сз-дегидроцик-лизации алканов [154, 160] и близкую ей реакцию дегидроциклизации вторичных аминов [161]. Естественно, что в каждом конкретном случае проявлялись специфические особенности реагирующих соединений. Свое дальнейшее развитие модель секстетно-дублетного механизма получила в работах [154, 158]. [c.128]

    Влияние степени дисперсности Pt в катализаторах на протекание реакций дегидроциклизации и изомеризации исследовалось в ряде работ [70—78]. Обнаружено [75], что при увеличении среднего размера частицы Pt от 1,0 до 45,0 нм увеличивается выход продуктов дегидроциклизации. Однако в работе [70] показано, что количественное распределение продуктов реакции и скоростей дегидроциклизации и изомеризации не зависит от размеров частиц (в интервале 1,5—5,0 нм). Интересные закономерности получены на образцах Pt/AbOa, содержащих 0,2 и 10% Pt [71, 73]. На высокодисперсном катализаторе [(0,2%) Pt)/Al20a] преобладают одиночные, главным образом одноатомные, активные центры и, следовательно, изомеризация и другие превращения углеводородов проходят через промежуточную стадию образования циклического переходного состояния. На катализаторе с большими кристаллитами [(10% Pt)/Al203] ак- [c.200]


    Подводя итоги исследованиям влияния водорода на протекание реакций дегидроциклизации, можно констатировать, что в присутствии различных Pt-катализато-ров (Pt-чернь, Pt/ , Pt/AbOa) наличие водорода по-разному сказывается на ходе реакций s- и Се-дегидро-циклизации углеводородов. Первая реакция ускоряется в атмосфере Иг, вторая — замедляется. Эта закономерность и ряд других отмеченных выше фактов служат основанием для предположения о существовании принципиальных различий в механизмах образования циклопентанов и аренов на металлических, в частности платиновых, катализаторах. [c.236]

    Следует подчеркнуть, что в обсуждаемых до сих пор работах в качестве катализаторов дегидроциклизации, как правило, использовали металлы в виде черней, пленок, а также Pt и Pd, отложенные на активированном угле, SiOg или некислом АЬОз, т. е. такие катализаторы, в которых носитель либо отсутствовал, ли о по крайней мере не влиял явным образом на каталитические свойства. Очевидно, что в присутствии би- и поли-функциональных металлоксидных катализаторов реакции дегидроциклизации могут проходить несколько иначе. Кроме того, течение этих реакций может осложняться рядом побочных и вторичных процессов. Краткий обзор этих работ, посвященных исследованию реакций дегидроциклизации на би- и полифункциональных металлоксидных катализаторах, приведен в следующем разделе. [c.244]

    Получило дальнейшее развитие предположение о высокой активности в реакции дегидроциклизации комплексных активных центров, содержащих ионы Pt +, химически связанные с поверхностью носителя — AI2O3 [188]. Так, в работах Н. Р. Бурсиан с сотр. [189—192] исследована структура активных центров алюмоплатиновых катализаторов в реакции Сб-дегидроциклизации н-гексана. На основании изучения с помощью экстракционного метода промотирующего действия щелочных металлов (Li, Na, s) на Pt-контакты, а также исходя из полученных данных об отсутствии связи между кислотными и ароматизирующими свойствами изучаемых катализаторов, предложена модель комплексного активного центра, содержащего ион Pt +. [c.256]

    В результате значительной работы было изучено влияние состава лигроина на соотношение между выходами и октановыми числами продукта [20]. Для переработки при различных режимах были использованы лигроины из нофти Кувейта с высоким содержанием парафиновых углеводородов и венецуэльской нефти с низким содержанием парафиновых углеводородов. Были получены данные для дебутанизированного бензина платформинга с октановыми числами по исследовательскому методу в чистом виде от 73 до 99 пунктов. Полученные результаты указывают на то, что парафиновые углеводороды в нефти с низким содержанием нафтенов подвергаются реакции дегидроциклизации, способствуя тем самым значительному повышению октанового числа продукта. Разница в выходах бензинов с октановым числом по исследовательскому методу в чистом виде 95 пунктов из нафтенового и парафинового сырья составляла [c.182]

    Данные по риформингу двух тяжелых бензинов венесуэльской и кувейтской нефтей при различных условиях процесса показывают, что получение ароматических углеводородов из нафтенового венесуэльского бензина может быть объяснено в основном дегидрированием нафтенов. С другой стороны, получение ароматики из алканового кувейтского бензина составляет от 140 до 157% от потенциально возможного количества, получаемого при конверсии нафтенов. Это доказывает, что реакция дегидроциклизации алканов имеет преимущественное значение для получения высокого выхода ароматики [164]. [c.54]

    Первые промышленные катализаторы — оксид хрома, несколько позднее — окспд молибдена, нанесенные на оксид алюминия. На использовании оксидномолибденового катализатора был основан промышленный процесс гидроформинга, существовавший до бО-х гг. Оксидномолибденовый катализатор, способствуя достаточно глубокому превращению нафтенов, был малоактивен в реакциях дегидроциклизации парафиновых углеводородов. Из-за недостаточно высокой активности катализатора приходилось повышать температуру процесса, которая достигала 520—540 °С. При высоких же температурах протекали нежелательные реакции гидрокрекинга, сопровождающиеся избыточным газообразованием. [c.40]

    Цеолиты пригодны и для дегидрирования парафиновых углеводородов при этом они устраняют некоторые побочные реалции, Нс1блюдаемые при использовании алюмохромовых катализаторов. Цеолит СаХ как катализатор дегидрирования отличается от всех других катализаторов тем, что позволяет осуществлять дегидрирование без сонутствующей реакции дегидроциклизации. В газовой фазе, получающейся при дегидрировании на цеолите СаА, имеется значительно больше непредельных углеводородов, чем в случае применения алюмосиликатного катализатора. Кроме того, на СаА практически не идет реакция изомеризации, как это бывает на алюмосиликатном катализаторе. [c.100]

    Понятно, что при составлении математического описания реального процесса всегда используется ряд допущений и предположений, которые могут оказаться неточными при изменении размера реактора или условий осуществления процесса. Например, основывающаяся на экспериментальных данных форма кинетического уравнения (описание) реакции дегидроциклизации парафиновых углеводородов, предложенная Питкетли и Стейнером [10], отличается от приведенной в работе [11]. Шесть различных форм кинетических уравнений для каталитического крекинга кумола предложены в работах Оболенцева и Грязева [12], Баллод и др. [13], Панченкова и Топчиевой [14], Корригана и др. [15], Вейса и Пратера [16], Планка и Найса [17]. [c.136]

    Было установлено, что реакция дегидроциклизации парафинов в присутствии платинированного угля протекает гладко, но пы-ход арс1матических углеводородов незначителен. Повышение тем-перату11Ы не приводит к увеличению выхода, так как реакция дегидроциклизации осложняется реакцией крекинга и наступает быстрое отравление катализатора. [c.482]

    Известен ряд схем, предложенных различными авторами для ооъясненпя механизма реакции дегидроциклизации парафинов. Ниже приводятся две схемы, по одной из них (I) олефипы являк тся промежуточными продуктами, по второй (II) — побочными продуктами реакции (х — активный центр иа поверхности катализатора). [c.485]

    Соотношение между реакциями крекинга и изомеризации вы-сокоюипящих парафиновых углеводородов в значительной мере зависит от типа применяемого катализатора. Применяя катализатор с высокой изомеризующей способностью, можно, как показано выще, получать преимущественно продукты изомеризации при подчиненном образовании продуктов расщепления. Такой подход лежит в основе процесса пидроизомеризации различного парафинсодержащего сырья [3—12]. Кроме того, используя селективный катализатор, избирательно расщепляющий нормальные и мало-разветвленные парафиновые углеводороды, можно удалять такие компоненты сырья в виде легких фракций при практическом отсутствии реакции изомеризации. На этом основан процесс каталитической депарафинизации нефтяного сырья [13]. Наряду с реакциями изомеризации и крекинга возможно дегидрирование части парафинов с последующей циклизацией образующихся непредельных углеводородов (реакция дегидроциклизации). Часть полученных таким образом нафтеновых углеводородов может, в свою очередь, подвергаться дегидрированию с образованием ароматических углеводородов. Указанные продукты реакций дегидроциклизации и дегидрирования обнаружены в тяжелой фракции гидроизомеризата технического парафина [6]. [c.302]

    В промышленных условиях на установках платформинга в присутствии платинорениевого на "f-AbOa катализатора (фторированного или хлорированного) проходит реакция дегидроциклизации н-гептана в толуол и гидрокрекинга толуола в газовой фазе до бензола и СН4 при давлении 30 атм (30-10 Па) и 7=768 К- Реакция проходит по схеме  [c.280]


Смотреть страницы где упоминается термин Реакция дегидроциклизации: [c.116]    [c.182]    [c.187]    [c.189]    [c.201]    [c.5]    [c.77]    [c.307]    [c.89]    [c.20]    [c.482]    [c.482]    [c.486]    [c.17]    [c.22]   
Курс органической химии Издание 4 (1985) -- [ c.365 ]

Практические работы по органическому катализу (1959) -- [ c.108 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидроциклизация

Дегидроциклизация -гептана в установке для проведения каталитических реакций

Каталитическая реакция дегидроциклизации парафиновых

Механизмы реакций дегидроциклизации парафинов

Реакции дегидрирования и дегидроциклизации

Реакции дегидроциклизации с образованием новой С—С-связи

Реакция ароматизации алканов дегидроциклизации алканов



© 2025 chem21.info Реклама на сайте