Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЭЛЕКТРОХИМИЧЕСКАЯ ТЕРМОДИНАМИКА Ионные равновесия

    Нарушение количественных соотношений теории Аррениуса из-за пренебрежения ион — ионным взаимодействием проявляется также в том, что различные методы определения степени диссоциации а дают несовпадающие результаты. Так, а можно рассчитать по уравнению (1.6), зная изотонический коэффициент Вант-Гоффа. Далее, поскольку электропроводность раствора зависит от концентрации свободных ионов и, следовательно, от степени диссоциации, то а можно определить по измерению электропроводности. Наконец, как следует из электрохимической термодинамики, разность потенциалов на концах равновесной электрохимической цепи связана с концентрацией ионов, участвующих в установлении электрохимического равновесия. Поэтому иногда степень диссоциации а можно было рассчитать по измерениям разности потенциалов соответствующей цепи. Расхождения в величинах а, рассчитанных тремя указанными методами, оказываются весь- [c.16]


    Нарушение количественных соотношений теории Аррениуса из-за пренебрежения ион-ионным взаимодействием проявляется также в том, что различные методы определения степени диссоциации а дают несовпадающие результаты. Так, а можно рассчитать по уравнению (1.6), зная изотонический коэффициент Вант-Гоффа. Далее, поскольку электропроводность раствора зависит от концентрации свободных ионов и, следовательно, от степени диссоциации, то а можно определить по измерению электропроводности. Наконец, как следует из электрохимической термодинамики разность потенциалов на концах равновесной электрохимической цепи связана с концентрацией ионов, участвующих в установлении электрохимического равновесия. Поэтому иногда степень диссоциации а можно рассчитать по измерению разности потенциалов соответствующей цепи. Расхождения в величинах а, рассчитанных тремя указанными методами, оказываются весьма существенными, особенно для растворов сильных электролитов. Для концентрированных растворов сильных электролитов последний метод иногда приводит к не имеющим физического смысла значениям а> 1. [c.20]

    При достаточно большом различии в электроотрицательностях компонентов экспериментально можно наблюдать (как и дл5 однофазного сплава) равновесный потенциал по компоненту А, т. е. потенциал равновесия (1.6). Измерения равновесных потенциалов гетерогенных сплавов выполнены на ограниченном числе объектов. Однако даже на основе немногих данных можно сделать вывод об ином характере обратимого взаимодействия компонентов с собственными ионами в растворе электролита, чем это следует из уравнений электрохимической термодинамики. [c.153]

    Электрохим. термодинамика основана на понятии электрохимического потенциала -термодинамич. ф-ции, характеризующей состояние к.-л. заряженного компонента при определенных внеш. условиях. Оно позволяет рассматривать равновесия на границе раздела электрод - электролит (см. Межфазные скачки потенциала), строение фаницы раздела фаз (см. Двойной электрический слой), связать эдс электрохимических цепей с тепловыми эффектами протекающих на электродах р-ций. Электрохим. измерения - основа одного из лучших методов изучения равновесий р-ций, в к-рых участвуют к-ты, основания и комплексные ионы. [c.237]

    Электрохимия — это наука, которая изучает закономерности, связанные с взаимным превращением химической и электрической форм энергии. Взаимное превращение этих форм энергии соверщается в электрохимических системах. Непременными составными частями электрохимической системы являются ионный проводник электричества — электролит два металлических электрода, которые создают контакт двух фаз — жидкой и твердой внешняя цепь — металлический проводник, обеспечивающий прохождение тока между электродами. Для того чтобы знать, каким закономерностям подчиняются электрохимические реакции, от чего зависит их скорость, что является источником электрической энергии в электрохимической системе и каков механизм прохождения электрического тока, необходимо изучить свойства растворов электролитов, электрохимические равновесия на поверхности раздела двух фаз, термодинамику электрохимических систем и кинетику электродных процессов. [c.6]


    В предыдущих главах были рассмотрены равновесные состояния процессов внутри электролитов с участием ионов (электролитическая диссоциация, гидролиз, сольватация и т. д.) и процессов на электродах (электрохимические реакции и характеризующие их параметры— обратимые электродные потенциалы). Эти состояния не зависят от времени, к ним применимы оба основных закона термодинамики. Поэтому соответствующие закономерности называются термодинамическими, а раздел электрохимии, посвященный им, — термодинамикой электрохимических процессов. Для электродных процессов равновесие характеризуется отсутствием электрического тока. [c.572]

    Ионика и электродика исследуют как равновесные, так и неравновесные явления и процессы. Изучение свойств ионных систем в равновесных условиях позволяет развить представления о строении растворов и расплавов электролитов и твердых электролитов, тогда как измерения в неравновесных условиях дают сведения об электропроводности ионных систем, а также о кинетике ионных реакций. В электро-дике исследованием равновесий на границе электрод — раствор (расплав) занимается электрохимическая термодинамика. Измерения скоростей процессов на этой границе и выяснение закономерностей, которым они подчиняются, составляют объект кинетики электродных процессов или электрохимической кинетики. В настоящее время кинетика электродных процессов представляет собой одно из наиболее быстро развивающихся направлений теоретической электрохимии. [c.6]

    Значительная часть практических работ по физической химии опирается на основные положения химической термодинамики. Сюда относятся калориметрические измерения (гл. III), изучение равновесий в голЮгенных (гл. IV) и гетерогенных (гл. V— XI) системах и ряд электрохимических измерений—определение электродвижущих сил обратимых гальванических элементов, потенциометрическое определение активностей ионов, изучение ионных равновесий (гл. XIV—XVI). [c.27]

    Все сказанное сгараведливо только для обратимого процесса, т. е. для плотностей тока, стрбмяш,ихся к нулю. При значительных плотностях тока, принятых в практике электролиза, реакции ионизации с образованием ионов Си+ протекают с меньшими затруднениями — с меньшей поляризацией, чем реакции ионизации Си—2е->Си +. В результате этого в раствор будут переходить ионы одновалентной меди в количестве, несколько большем, чем это требуется по равновесию (Х1У,5). Однако в электролите, где действуют законы термодинамики, а не электрохимической кинетики, быстро вновь установится соотношение 2Си+ Си +4-Си и избыточные против равновесного одновалентные ионы меди будут да вать ионы двухвалентной меди и металлическую медь, выпадающую в виде высоко-дисперсного порошка в шлам. [c.393]

    В связи с идентичностью плотности электрического тока и перемещения ионов в единице объема за единицу времени все наши усилия повысить плотность тока основывались на воздействии на кинетику реакций. Термодинамика же как учение о равновесии, при котором не происходит никаких необратимых процессов, дает значения равновесных потенциалов отдельных электродов и соответственно значение равновесного напряжения элемента в целом. Как известно, отношение измеренного при исчезающе малой плотности тока напряжения на зажимах элемента к вычисленной термодинамически (обратимой) величине э. д. с. соответствует максимальному значению коэффициента полезного использования топлива электрохимического метода ) получения энергии (при этом предполагается, что подведенные газы не улетучиваются неиспользованными, например, через слишком большие поры). Однако и в случае полной обратимости коэффициент полезного использования топлива может быть и больше и меньше, чем г = 100%. Коэффициент полезного использования топлива следует четко отличать от статического к. п. д. [26] y = So6iu./So6p.. где е бщ. является отношением выработанной энергии к теплотворной способности АН. Этот кажущийся парадокс состоит в том, что в тепловых двигателях в расчет принимается теплотворная способность, т. е. необратимое изменение энтальпии АН, тогда как в случае электрохимического превращения энергии определяющим является изменение обратимой свободной энтальпии AG = АН—TAS [c.30]

    Адсорбция и потенциалы на границах масло—вода. Дин, Гатти и Райдил2 рассмотрели как термодинамику, так и механизм возникновения разностей потенциалов при адсорбции ионов и при адсорбции или растекании плёнки, содержащей диполи. Они показали, что, если один или несколько заряженных компонентов способны проникать через границу раздела и приходить в равновесие по обе её стороны, адсорбция межфазной плёнки сама по себе не должна изменять межфазного потенциала, так как электрохимические потенциалы заряженных компонентов, проникающих через границу раз-де ш, при равновесии равны в обеих фазах  [c.534]



Смотреть страницы где упоминается термин ЭЛЕКТРОХИМИЧЕСКАЯ ТЕРМОДИНАМИКА Ионные равновесия: [c.376]   
Смотреть главы в:

Теоретические основы электрохимии 1972 -> ЭЛЕКТРОХИМИЧЕСКАЯ ТЕРМОДИНАМИКА Ионные равновесия




ПОИСК





Смотрите так же термины и статьи:

Ионные равновесия

Равновесие электрохимическое

Термодинамика ионного об ена



© 2025 chem21.info Реклама на сайте