Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация в масс-спектрометрии ион-молекулярные реакции

    Пособие содержит краткое описание масс-спектрометра, условий ионизации веществ, типов ионов в масс-спектре. На большом числе примеров масс-спектров природных веществ, металлоорганических соединений и других веществ (растворителей, реагентов, лекарственных препаратов) подробно анализируются типы распада молекулярных и осколочных ионов. В книге рассмотрены требования к анализируемым веществам — их летучести, стабильности и т. д., приводятся химические и термические реакции, происходящие в приборе до ионизации, а также синтезы удобных для анализа производных даются практические советы по расшифровке масс-спектра. [c.375]


    Методы ионизации, используемые в аналитической масс-спектрометрии, можно классифицировать на различной основе (см. табл. 9.4-3). Важное значение имеет деление на методы мягкой и жесткой ионизации. При жесткой ионизации молекулам аналита предается значительное количество энергии, что с большой вероятностью приводит к реакциям мономолекулярной диссоциации. Ионизация электронным ударом, как уже обсуждалось ранее, является типичным примером жесткой ионизации. Большинство других способов относятся к мягкой ионизации. Обычно они приводят к незначительной фрагментации, и таким образом можно получить информацию о молекулярной массе. Классификация методов мягкой ионизации может основываться на способах ввода вещества, хотя некоторые комбинированные способы могут не укладываться в четкие рамки такой классификации. Наиболее важные методы мягкой ионизации будут подробно обсуждены в последующих разделах. [c.266]

    Иная картина наблюдается в жидкостях или твердых телах, где ионы и возбужденные атомы (молекулы) удерживаются главным образом в треках и шпорах (эффект клетки). Довольно часто газы можно исследовать методами, неприменимыми к жидким и тем более твердым системам. Типичные методы изучения радиационных явлений в газах следующие определение степени ионизации масс-спектрометрия, позволяющая получать сведения об ионах и ион-молекулярных реакциях исследование фотохимического или фото-сенсибилизированного разложения газов для анализа реакций с участием возбужденных продуктов и образовавшихся из них свободных радикалов. [c.174]

    Пары воды являются одной из простейших систем, к которой применимы все методы исследования газов, описанные в гл. 7. Наиболее важные ионы, образующиеся в масс-спектрометре, и реакции, постулированные для объяснения их возникновения, даны в табл. 8.1. При более высоких потенциалах в ионном источнике могут идти, конечно, и другие реакции по сравнению с реакциями, приведенными в табл. 8.1 [8, 9], но они для простоты опускаются. Относительные интенсивности ионных пиков получены разными исследователями при ионизирующем напряжении 50 в [10 и 100 в (111 соответственно. Как можно видеть, наибольшая доля ионов приходится на Н2О+, Н3О+, 0Н+ и Н+, которые, очевидно, и в жидкой воде имеют важнейшее значение (возбужденные молекулы воды в масс-спектрометре не регистрируются). Поскольку было найдено, что интенсивность пика иона Н3О+ пропорциональна квадрату давления паров воды в ионном источнике масс-спектрометра, то, следовательно, данный ион образуется в результате вторичных бимолекулярных (ион-молекулярных) реакций, показанных в таблице. Можно определять и отрицательные ионы, если переменить знак ускоряющего потенциала и направление магнитного поля. Как было показано, отрицательных ионов образуется мало, особенно это относится к ОН—, а ион НгО совсем не наблюдался. Малые выходы отрицательных ионов дают основание считать, что в парах воды электроны, образующиеся при ионизации, нейтрализуются непосредственно положительными ионами еще до того, как электроны успеют прореагировать с нейтральными молекулами воды. Данный механизм не обязателен для жидких сред, где электроны или другие заряженные частицы могут гидратироваться и вести себя совершенно иначе. [c.210]


    Масс-спектрометрия отличается от других видов спектроскопии тем, что регистрируемые сигналы не являются следствием переходов между энергетическими состояниями. Получаемая информация представляет собой результат химических реакций — ионизации и фрагментации. Следовательно, чтобы правильно интерпретировать масс-спектры, аналитик должен хорошо представлять себе все этапы проведения измерений. Интерпретация масс-спектров — это сложная задача, для решения которой необходимы большой опыт и обширные знания о вероятных механизмах распада заряженных фрагментов в спектрометре. Информацию, получаемую в результате масс-спектрометрического анализа, иногда рассматривают вместе с данными других аналитических методов, например ЯМР-, ИК-спектроскопии, газовой хроматографии и т. д., что обычно позволяет определить молекулярную структуру или рассчитать состав смеси. Из-за сложности интерпретации масс-спектров [c.117]

    Масс-спектрометрия с химической ионизацией в противоположность ионизации электронным ударом характеризуется меньшей внутренней энергией образующихся ионов. Кроме того, образующиеся в результате ионно-молекулярных реакций ионы взаимодействуют с молекулами с передачей избыточной энергии до наступления теплового равновесия. Эти факторы обусловливают малую сте- [c.126]

    Ионизация и диссоциация молекул при масс-спектрометрии могут происходить под действием электронного удара, фотонов [1], при перезарядке [2], в сильном электрическом поле [3], на горячих поверхностях [4], при столкновениях с возбужденными атомами [5], ионно-молекулярных реакциях [6], столкновениях с быстрыми атомами и ионами [7]. Фотоионизация и ионизация метастабиль-ными атомами инертных газов имеют много общего с ионизацией и возбуждением при электронном ударе [8]. Механизм ионизации и возбуждения при перезарядке, ионно-молекулярных реакциях и особенно в сильном электрическом поле существенно иной. [c.5]

    Современный уровень развития метода, а именно отсутствие количественной теории образования масс-спектров, ограниченное число исследованных модельных соединений и, наконец, достаточно сильная зависимость масс-спектра от приборных факторов не позволяет пока еще полностью использовать информацию, поставляемую масс-спектрометром. В принципе, наши эмпирически накопленные представления, связывающие масс-спектр со структурой, ограничиваются в большинстве случаев корреляциями между структурой и наиболее характерными ионами, образующимися при диссоциативной ионизации молекулы. Процессы образования этих ионов на первых ступенях распада отражают лишь малую долю всех реакций распада возбужденного молекулярного иона. [c.279]

    Для выяснения сольватационных эффектов необходимо иметь сведения об изучаемом процессе и в данном растворителе, и в газовой фазе. В течение длительного времени химики были лишены такой возможности и лишь за последние два десятилетия положение изменилось благодаря разработке методов изучения газофазных ионно-молекулярных реакций спектрометрии ион-циклотронного резонанса, масс-спектрометрий высокого давления, масс-спектрометрии с химической ионизацией и др. [224, 225], позволяющих изучать как равновесие, так и кй-нетику процессов. [c.75]

    Приведенные в табл. 13 данные следует рассматривать как весьма приближенные. Все же они показывают, что за время 10 сек значительная, а в некоторых случаях преобладающая часть ионов не успевает претерпеть мономолекулярный распад . Это относится, в частности, к ненасыщенным углеводородам и метану. Таким образом, значительная часть образовавшихся молекулярных ионов. может вступить во взаимодействие с молекулами и для этих веществ ионно-молекулярные реакции могут преобладать над процессами распада молекулярных ионов. Для более сложных парафиновых углеводородов скорость диссоциации молекулярных ионов может быть сравнима по величине со скоростью ионно-молекулярных реакций. Поэтому в этих случаях могут происходить реакции как осколочных, так и молекулярных ионов с молекулами. Осколочные ионы, образующиеся в результате процессов диссоциативной ионизации, во многих случаях также оказываются в состоянии возбуждения. На это указывают, в частности, масс-спектрометрические данные о зависимости процессов диссоциации осколочных ионов от энергии электронов. Эти исследования основываются на измерении интенсивностей линий так называемых дробных масс, характеризующих вторичные процессы диссоциации, происходящие при соударениях ионов с молекулами в анализаторе масс-спектрометра. [c.49]

    Ионизация молекулы осуществляется путем электронного удара при этом образуются молекулярные ионы в виде катион-радикалов [уравнение (А.42а)]. В том случае, когда одной молекуле передается количество энергии, большее, чем это необходимо для ионизации (потенциал ионизации органических соединений составляет 8—15 эВ), то образующийся молекуля,р-ный ион распадается на осколки (фрагменты). Обычно энергию электронного удара выбирают достаточно высокой (50—70 эВ), так что масс-спектр хорошо воспроизводится, и его вид не зависит от приложенной энергии. Для молекулы АВС в масс-спектрометре принципиально возможно протекание следующих реакций  [c.158]


    Масс-спектрометрия предоставляет в распоряжение аналитика эффективный метод обнаружения, идентификации и исследования структуры органических соединений. Масс-спектр несет информацию о массе и относительном содержании молекулярных и осколочных ионов, возникающих при ионизации молекул в ионном источнике масс-спектрометра. Масса молекулярного иона соответствует молярной массе по осколочным ионам можно судить о структурно-специфических реакциях деструкции молекул в условиях измерений и, таким образом, делать далеко идущие выводы о строении исследуемого соединения. На основании природного содержания изотопов в элементах из анализа масс-спектра можно получить сведения о типе и [c.275]

    Сравнительно недавно Мансон и Филд [59], исследуя ион-молекулярные реакции, открыли явление химической ионизации, значение которого в комбинированном применении разделительных методов хроматографии и масс-спектрометрии непрерывно возрастает. Это обстоятельство объясняется тем, что масс-спектры химической ионизации доставляют надежную информацию [c.282]

    Значительная роль принадлежит масс-спектрометрии в изучении кинетики и механизмов химических реакций, особенно элементарных химических актов, в том числе ион-молекулярных, процессов возбуждения, ионизации, фрагментации и перестройки молекул. [c.55]

    Увеличение энергии ионов приводит к уменьшению сечений реакций. Причина такой зависимости, по-видимому, та же, что и для процессов ионизации, рекомбинации и перезарядки ионов, т. е. с увеличением скорости иона уменьшается время взаимодействия его с молекулой. Поскольку, как было показано [55], наблюдаемые в масс-спектрометре ионно-молекулярные реакции идут без энергии активации, для осуществления этих реакций нет необходимости в том, чтобы ионы имели большую кинетическую энергию. Чем ниже кинетическая энергия ионов, тем больше эффективное сечение реакции. Абсолютные величины сечений этих более сложных процессов [c.86]

    Увеличение энергии ионов приводит к уменьшению сечений реакций. Причина такой зависимости, по-видимому, та же, что и для процессов ионизации, рекомбинации и перезарядки ионов, т. е. с увеличением скорости иона уменьшается время взаимодействия его с молекулой. Поскольку, как было показано [52], наблюдаемые в масс-спектрометре ионно-молекулярные реакции идут без энергии активации, для осуществления этих реакций нет необходимости в том, чтобы ионы имели большую кинетическую энергию. Чем ниже кинетическая энергия ионов, тем больше эффективное сечение реакции. Абсолютные величины сечений этих более сложных процессов по порядку величины также близки к газокинетическим сечениям. Таким образом, сложные ионно-молекулярные реакции идут практически при каждом соударении. [c.103]

    Большим самостоятельным направлением в масс-спектрометрии является исследование ион-молекулярных реакций. Подробный обзор как техники исследования, так и полученных результатов дан Фридманом [30]. Изучение ион-молекулярных реакций привело к возникновению нового метода ионизации, получившего название химической ионизации [31, 32]. При химической ионизации пучок нейтральных частиц подвергается бомбардировке ионным пучком и при столкновениях происходит перезарядка. Например, гексан может быть иони- [c.301]

    Перегруппировки характеризуются низким фактором частоты (высокая энтропия активации) и осуществляются медленнее, чем простая реакция расщепления, имеющая ту же энергию активации [18]. Важное значение энтропийных факторов в масс-спектрометрии, особенно для перегруппировок, было отмечено Филдом и Франклином [19], которые установили, что такие процессы могут идти с низкими энергиями активации. Поэтому перегруппировки должны преобладать в реакциях молекулярных ионов, образовавшихся при небольшом избытке внутренней энергии, поскольку такие ионы будут иметь сравнительно длительные времена жизни и могут успеть перегруппироваться до разложения. Количество избыточной внутренней энергии ионов может быть уменьшено, если эти ионы образуются при напряжении, едва превышающем потенциал появления. Если же при ионизации иону сообщается большой запас избыточной энергии, то разложение пойдет по путям, характеризующимся высокими факторами частоты и высокими энергиями активации, например путем разрыва простых связей. Таким образом, между разложением и перегруппировками имеется конкуренция, причем перегруппировки оказываются предпочтительнее при низкой энергии электронного пучка. Исходя из этого предложено объяснение перераспределения дейтерия в бутене-1-[4,4,4-Оз] при уменьшении энергии электронного пучка [20]. Эта интерпретация согласуется с более поздними экспериментами [21—24]. [c.24]

    Впервые приведены результаты, применения метода масс-спектрометрии с химической ионизаци- ей для количественного анализа смесей углеводородов и серосодержащих соединений. Исследована ионизация в ионно-молекулярных реакциях н.алканов, алкилнафталинов, алкилбензолов, бензтиофена и смесей из них с применением различных газов-реагентов (изобутан, метан). На примере н.алканов показано, что использование изобутана предпочтительнее. Приведены результаты расчета коэффициентов относительной чувствительности и состава модельных смесей из этих соединений при расчете по пикам квазимолекулярных ионов. Анализ спектров индивидуальных соединений и искусственных смесей позволил перейти к определению состава нефтяных фракций без их предварительного разделения. Приведено сопоставление результатов определения состава нефтяных фракций методами- электронного удара и химической ионизации. [c.240]

    Кроме оперативности анализа, системы двойной масс-спектрометрии обеспечивают возможность проведения структурных исследований без выделения изучаемого соединения в физически индивидуальном виде. В этом случае масс-спектральный анализатор первой ступени служит для выделения молекулярного иона исследуемого соединения из ионного луча, образованного суммарным ионным током всех компонентов образца. Выделенный поток молекулярных ионов, поступает затем в специальную камеру, где они подвергаются разнообразным воздействиям, которые вызывают дальнейшую фрагментацию или превращения этих ионов. В этой камере могут происходить, бомбардировка молекулярных ионов электронами высоких энергий, соударения с нейтральными атомами, вторичная химическая ионизация или ион-молекулярные реакции со специальными газами-реагентами и т. п. Ионы любой полярности, образующиеся в этой камере, анализируются после формирования из них вторичного ионного луча масс-спектрометром второй ступени системы MG/M . Выбор типа анализатора определяется для каждой ступеиж в соответст- [c.7]

    Всегдяпгний вопрос в масс-спектрометрии ка каком оскозапии приписывается та или иная структура молекулярным и осколочным ионам В масс-спектрах химической ионизации соединений (1-3) регистрируются осколочные ионы типа (Г,Д) (см. схема 2), которые могут образоваться только из ионов (М-СНз) в результате ретро-диеновой реакции [17]. Следовательно, фрагменты (Г,Д) и (М-СНз) и протонированные МН имеют строение, указанное на схеме 2. [c.171]

    Масс-спектрометрия является важнейшим методом регистрации образования и превращений ионов в газовой фазе. В этом случае молекулярный пучок ионов негюсредственно вытягивается высоким вакуумом из реактора, в котором происходят исследуемые процессы. Наряду с этим метод нашел ншрокое применение для исследования незаряженных частиц — молекул и свободных радикалов. В этом случае анализируемая проба предварительно поступает в ионный источник, где частицы подвергаются ионизации, чаще всего с помощью пучка ускоренных электронов. Проба может вытягиваться высоким вакуумом из реактора, в котором протекает изучаемая газовая реакция, из баллона напуска, в котором испаряется исследуемый образец жидкости или твердого тела, из газо-жидкостного хроматографа, в котором проходит предварительное разделение компонентов исследуемой реакционной смеси. Метод обладает высокой чувствительностью и позволяет анализировать вещества с упру-1 остью пара до 10 Па. [c.44]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    Очевидно, что методика идентификации при помощи ГХ-МС или прямого ввода пробы и ионизации электронным ударом не всегда приводит к успеху. В принципе можно сказать, что ее применение ограничено веществами, имеющими значительную плотность паров (летучесть) и термическую стабильность. В этом отношении прямой ввод пробы имеет более широкий диапазон приложений, чем ГХ-МС. Область применения ГХ-МС может быть расширена за счет дериватизации компонентов, увеличивающей их летучесть, что часто находит применение в традиционном газохроматографическом анализе (см. разд. 5.2). В масс-спектрометрии использование подобных реакций дериватизации преследует две цели. Первая из них заключается в увеличении летучести вещества экранированием полярных групп, т. е. полярные протоны кислот, аминов, спиртов и фенолов заменяются более инертными группами путем, например, этерификации кислотных групп, ацетилирования амихюгрупп или силанизиро-вания. Кроме этого, дериватизацией можно улучшить параметры ионизации. Так, включение пентафторфенильного заместителя обеспечивает более интенсивный отклик в случае масс-спектрометрии отрицательно заряженных ионов при химической ионизации электронным захватом. В рамках этих направлений, многие нелетучие и (или) термически нестабильные вещества, такие, как стероиды, (амино)кислоты, сахара, и широкий спектр лекарственных препаратов, становятся доступными газохроматографическому и ГХ-МС-анализу. Очевидно, что процедура дериватизации влияет на массу исследуемого соединения. В общем случае, сдвиг в область более высоких значений m/z является преимуществом, так как в этой области должно быть меньшее число мешающих компонентов. Однако в случае идентификации неизвестных соединений надо помнить, что дериватизация может привести и к непредвиденным артефактам тогда для определения молекулярных масс рекомендуется использовать методы мягкой ионизации (разд. 9.4.2). [c.301]

    Ионно-молекулярные реакции являются основой не только химической ионизации, их роль также существенна в процессах эмиссии ионов, протекающих при бомбардировке быстрыми атомами (ББА) объектов в конденсированной фазе. Масс-спектрометрия с ББА уникальна по чувствительности и информативности, применяется в биологии и медицине для исследования кинетики реакций, в том числе ферментативных в координационной химии позволяет определять структуру и устойчивость 7с-комплексов переходных металлов, оценивать термодинамические констаигы устойчивости комплексов щелочных металлов с краун-эфирами и т.д. [c.143]

    Масс спектры компонентов смесей, получаемые в условиях ХМС, могут отличаться от спектров полученных при анализе соответствующих чистых соединении на аналитическом масс спектрометре На вид масс спектров влияют следующие факто ры 1) температура хроматографической колонки, интерфейса и соединительных линий, которая определяет возможность раз ложения или термических превращений анализируемых ве ществ 2) температура ионного источника оказывает наиболь шее влияние на вид масс спектров, вызывая изменение вероят ности различных путей распада, влияние температуры особен но заметно при ХИ, повышение температуры ионного источника уменьшает относительное количество ионов с большими масса ми 3) условия ионизации, которые часто отличаются от приня тых в аналитической масс спектрометрии, например, в ГХ—МС ионизация осуществляется электронами с энергиями порядка 15—20 эВ, тогда как в обычной масс спектрометрической ана литической практике — либо электронами высоких энергий (50—70 эВ), либо в близпороговой области (8—12 эВ), 4) дав тение в ионном источнике может быть выше оптимального, что приводит к увеличению вклада продуктов ионно молекулярных реакций даже при ЭУ ионизации, следует иметь в виду, что не смотря на большую скорость сканирования, давление в ионном источнике изменяется за время элюирования хроматографиче ского пика, это приводит к изменению относительных интенсив ностей регистрируемых пиков по сравнению с пиками в обыч ном масс спектре [c.127]

    Здесь же отметим, что исследования ионно-молекулярных реакций нашли также применение для измерения термохимических величин, например, для измерения сродства молекул к протону [341], к электрону [763], а также в аналитической масс-спектроскопии в методе так называемой химической ионизации [758, 769, 770]. В этом методе регистрируется масс-спектр, получаемый нри реакции ионов (например, СН5, образуемых при ионно-молекулярных реакциях в СН4) с анализируемыми молекулами. Получаемый масс-спектр оказывается малолинейчатым по сравнению с масс-спектром электронного удара, что сильно упрощает анализ и расширяет аналитические возможности масс-спектрометрии. [c.379]

    Основные научные работы связаны с изучением кинетики химических реакций, протекающих под действием различных физических факторов, особенно излучений, и с применением физических методов исследования в химии, в частности масс-спектрометрии для исследования реакций свободных радикалов и ионов. Обнаружил (1952) реакции органических ионов с молекулами в газовой фазе. Показал (1959), что отсутствие энергии активации — основная черта ионно-молекулярных реакций, за исключением тех, которые протекают с изменением орбитальной симметрии. Открыл (1959) ион ме-тония. Ввел (1957) правило последовательности ионных стадий сложных радиационно-химических превращений в газах ионизация — ионно-молекулярные реакции — рекомбинация заряженных частиц. Создал (1969) первый химический [c.482]

    Применение в органическом анализе масс-спектрометрии с химической ионизацией обусловлено ее высокой чувствительностью и селективным образованием квазимолекулярных ионов, обеспечивающих возможность определения молекулярной массы исследуемого соединения. Ионизация осуществляется в ионномолекулярных реакциях молекул анализируемого образца с так называемыми ионами-реагентами, образующимися при взаимодействии ионов, получающихся в результате ионизации реагентного газа электронным ударом, с молекулами того же газа при повышенном 10—100 Па) давлении в ионном источнике масс-спектрометра. Ионы, образующиеся в результате электронной бомбардировки молекул газа реагента, носят название первичных, а получающиеся в ионномолекулярных реакциях первичных ионов с нейтральными молекулами газа реагента называются вторичными ионами [1, 2]. [c.126]

    К специальным приемам, используемым при определении радикалов, относятся приготовление и смешивание реагирующих веществ для последующего получения радикалов. В работе [658J описана методика смешения атомного водорода и молекулярного кислорода для получения радикалов НОг- При помощи масс-спектрометра исследовано множество реакций, приводящих к образованию радикалов [148, 1264, 1269, 53, 90, 148, 170, 289, 378, 577, 578, 624—628, 657—659, 661, 662, 853, 922, 1019, 1020, 1034, 1035, 1048, 1217, 1229, 1263, 1265—1267, 1269, 1270, 1351, 1544, 1657, 1708, 1709, 2Э51, 2052]. Эти исследования относятся к идентификации свободных радикалов, измерению их потенциалов ионизации или скоростей реакций. В ряде случаев измерения потенциалов ионизации свободных радикалов проводились в присутствии молекулярных соединений, являющихся неизбежными примесями, и поскольку, как правило, потенциал ионизации свободного радикала ниже, чем молекулы, то энергия бомбардирующих электронов подбиралась таким образом, чтобы обеспечить ионизацию радикалов, но была ниже потенциала ионизации всех присутствующих молекул. Свободные радикалы могут быть определены в присутствии нейтральных молекул даже при использовании высоких энергий ионизирующих электронов. Для количественного определения свободных радикалов обычно применяют энергии около 50 эв, поскольку при этой энергии достигается наибольшая чувствительность определений, и измерения мало зависят от небольших колебаний энергии или контактной разности потенциалов. [c.452]

    Поскольку авторы показали, чтр при 260° С наличие ртути не изменяет распределения продуктов радиолиза, они сделали вывод, что ион-молекулярные реакции в данных условиях не играют существенной роли. Это предположение наиболее уязвимо по отношению к иону СН , который не акцептируется ртутью, так как потенциал ионизации метильного радикала слишком мал ( 10,0 в), т. е. ионы СН , вероятно, должны иметь важное значение в опытах Мейнса и Ньютона. Дело в том, что ионы СН з образуются главным образом при диссоциации ионов Ht, которые, по мнению авторов, в данных экспериментах имели слишком малое время жизни (около 10-3 сек, а время собирания их в масс-спектрометре равно 10-6 eti). [c.194]

    Масс-спектр представляет собой совокупность пар чисел, характеризующих массу и количество частиц, образующихся при ионизации органических соединений различными способами. Дискретный характер масс-спектров позволяет эффективно использовать ЭВМ для их обработки, хранения и интерпретации. Значительная часть регистрируемых масс-спектрометром частиц (а иногда все) соответствует вторичным ионам, возникающим при распаде (фрагментации) молекулярных ионов, первоначально образующихся при ионизации незаряженных молекул. По этой причине для интерпретации масс-спектров первостепенное значение имеет накопленная в настоящее время обширная информация об общих закономерностях фрагментации различных классов соединений. Именно этим проблемам посвящено подавляющее большинство исследований в органической масс-спектрометрии. Однако фрагментация ионов относится к процессам, протекающим во времени (подчиняется закономерностям реакций распада первого порядка), и поэтому характер получаемых спектров определяется не только составом и строением исходных молекул, но также и условиями эксперимента способами и режимами ионизации, аппаратурными и другими факторами. Зависимость масс-спектров от условий их формирования и регистрации является причиной сравнительно невысокой воспроизводимости интенсивностей сигналов, создает некоторые трудности при решении задач идентификации и делает необходимой статистическую обработку экспериментальных данных. Использованию основных положений математической статистики при интерпретации масс-спектров до сих пор не уделялось должного внимания, и эти важные вопросы требуют сиеци-дльного рассмотрения. [c.4]

    Первым этапом масс-спектрометрического анализа твердых веществ является перевод пробы в газообразное состояние с одновременной или последовательной ионизацией различных молекулярных или атомных частиц. Источником энергии, необходимой для осуществления этого процесса, обычно служит электрический разряд. Световая энергия, сконцентрированная от дуги, применяется редко из-за сложной аппаратуры применение импульсной лампы ограничено слабостью светового потока. Однако появление лазера обеспечило экспериментаторов новым мощным инструментом для испарения твердых тел, а сочетание лазера с масс-спектрометром дало положительный результат. Простота лазерного источника позволила проводить анализ частиц за период, равный времени пробега ими источника, давая, таким образом, информацию, неосложненную столкновениями, реакциями в пучке и соударениями со стенками. [c.424]

    При данной энергии захватываемых электронов все молекулярные ионы образуются с одной энергией возбуждения, равной сумме энергии захватываемого электрона и энергии электронного сродства молекулы. Для резонансов в области энергии электронов 5—8 эв энергия возбуждения молекулярного иона значительно превышает среднюю энергию возбуждения положительных ионов в стандартных условиях ионизации, принятых в масс-спектрометрии. Особенность резонансных процессов образования осколочных ионов заключается в том, что избыточная энергия может быть рассеяна только в процессе диссоциации — на поступательную энергию продуктов диссоциации и их внутреннее (колебательное) возбуждение. Большая избыточная энергия реакции означает большее колебательное возбуждение ионов, которое способно привести как к их дальнейшей диссоциации, так и к автоотщеплению электрона. Ионы структуры а энергетически менее выгодны, но избыточная энергия реакции (I) меньше избыточной энергии реакции (П). [c.55]

    Так были названы [241 методы измерения констант скорости ионно-молекулярных реакций, когда и первичный, и вторичный ион образуются внутри ионизационной камеры в ионном источнике масс-спектрометра, причем вторичные ионы выявляют, следя за зависимостью тока ионов разных масс от давления, а первичные ионы, ответственные за появление данных вторичных ионов, обнаруживают, изучая сравнительным образом зависимость от энергии ионизующего агента (электронов или фотонов) тока первичных и вторичных ионов. Большей частью совпадение потенциала появления первичных и вторичных ионов и указывает на то, что данные вторичные ионы происходятиз данных первичных. Этот же подход позволяет получить константу скорости для невоэбужденного первичного иона. В полном объеме такая совокупность действий используется, к сожалению, редко. Впф-вые она была последовательно осуществлена в работе [391. Особенностью метода внутренней непрерывной ионизации (в отличие от импульсной - см. ниже) является непрерывно существующее внутри реакционной области электрическое поле, вытягивающее ионы. Из-за этого ионы имеют некоторый разброс по энергиям со средней энергией в большинстве работ порядка немногих десятых электронвольта. [c.9]

    Прежде чем переходить непосредственно к вопросу о том, каким образом можно исследовать ион-молекулярные кластеры в газовой фазе, полезно будет напомнить некоторые более ранние результаты изучения ионов в газовой фазе. Исследование газовых разрядов в разреженных газах началось в 1750 г. и привело в результате работ Хитдорфа, Голдстейна, Вина и в особенности Дж. Дж. Томсона к установлению существования электронов, положительных и отрицательных ионов в газовой фазе. Исследования газовых разрядов и влияния электрических и магнитных полей на траектории ионов привели Томсона к изобретению первого масс-спектрометра. По разным причинам технического характера давление в ионном источнике установки Томсона было больше, чем в современных приборах. При более высоких давлениях первичные ионы, образующиеся в источнике (как правило, в результате электронного удара), могут рекомбинировать с нейтральными молекулами и реагировать с ними. Возможная последовательность реакций после первичной ионизации молекулы воды быстрым электроном такова  [c.66]

    Масс-спектрометрический метод занимает особое место в химической кинетике. Это, пожалуй, единственный инструментальный аналитический метод, в котором глубоко вакуулпше режимы работы предпочтительнее режимов с использованием высоких давлений. Типовые применения масс-спектрометров в химической кинетике — это исследование всех элементарных процессов ионизации, ионно-молекулярных реакций, реакций атомов, свободных радикалов, возбужденных частиц, исследование реакций в молекулярных пучках, включая скрещенные. Все виды этих применений масс-спектрометрии получили то или иное развитие в Институте химической физики АН СССР. [c.54]


Смотреть страницы где упоминается термин Ионизация в масс-спектрометрии ион-молекулярные реакции: [c.152]    [c.200]    [c.170]    [c.274]    [c.129]    [c.35]    [c.139]    [c.214]    [c.27]    [c.22]    [c.212]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.267 ]




ПОИСК





Смотрите так же термины и статьи:

Ионизация в масс-спектрометрии

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Масс-спектрометрия молекулярной массы

Масс-спектрометрия молекулярный

Молекулярная масса

Молекулярность реакции

Молекулярный вес (молекулярная масса))



© 2025 chem21.info Реклама на сайте