Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория информации и молекулярная симметрия

    В наших ранних исследованиях формализм теории информации применялся к молекулярному графу в целом для расчета некоторых индексов симметрии молекулярной структуры. Согласно соотношению эквивалентности, определенному на множестве вершин У(С) химического графа С, две вершины принадлежат одному и тому же классу эквивалентности, если они имеют одинаковую кратность ребер и одно и то же число соседей первого порядка с одинаковыми степенями. Установлено, что индексы структурной симметрии полезны при рассмотрении связи химической структуры с физическими и биологическими свойствами однотипных соединений [21—27]. Естественным расширением этого подхода явился учет при определении соотношения эквивалентности соседей вершин следующего порядка (т. е. соседей ближайших соседей). Такой метод был разработан, и вычисленные индексы называются индексами симметрии окрестностей [28]. [c.209]


    ТЕОРИЯ ИНФОРМАЦИИ И МОЛЕКУЛЯРНАЯ СИММЕТРИЯ [c.242]

    С момента своего возникновения квантовая химия была связана главным образом с изучением электронного строения молекул, т.е. электронного распределения в стационарных состояниях, а также состава входящих в волновую функцию молекулярных орбиталей, взаимного расположения уровней энергии занятых и виртуальных орбиталей и т.п. Были предприняты многочисленные попытки интерпретировать такие понятия классической теории, как валентность, химическая связь, кратность химической связи и др. Одновременно были введены и многие новые понятия, такие как гибридизация, а- и л-связи, трехцентровые связи и т.д., часть из которых прочно вошла в язык современной химической науки, тогда как другие оказались менее удачными и сейчас уже хорошо забыты. К тому же и содержание большинства понятий, возникающих внутри квантовой химии, заметно трансформировалось с течением времени. В квантовой химии было введено большое число различных корреляций между экспериментально наблюдаемыми для вещества и вычисляемыми для отдельных молекул величинами. Сама по себе химия является в существенной степени корреляционной наукой, базирующейся прежде всего на установлении соответствия между свойствами соединений и их строением и последующем предсказании требуемой информации для других соединений. По этой причине богатейший набор информации о строении, в том числе электронном строении соединений, предоставляемый квантовой химией, оказался как нельзя кстати для дальнейшего активного развития химической науки. Так, на основе квантовохимических представлений была развита качественная теория реакционной способности молекул, были сформулированы правила сохранения орбитальной симметрии, сыгравшие важную роль при исследовании и интерпретации реакций химических соединений. [c.4]

    После того как определена группа симметрии молекулы, можно воспользоваться методами теории групп для упрощения задач, возникающих в теории валентности или молекулярной спектроскопии. Необходимая для этого информация содержится в таблицах характеров. Таблицы характеров имеют стандартный вид, а обозначения установлены международным соглашением. [c.145]

    Колебательные спектры многоатомных молекул интерпретируют на основе учения о симметрии молекул и теории групп. Математический аппарат теории групп позволяет вычислить число частот и правила отбора для молекул различной симметрии. Такая информация, чрезвычайно ценная для определения молекулярных констант, изучения строения молекул и т. д., находит сравнительно малое применение для решения химикоаналитических задач. Для решения этих задач используются так называемые характеристические частоты. [c.57]


    А. В. Киселев (Московский государственный университет им. М. В. Ломоносова, химический факультет Институт физической химии АН СССР, Москва). Начатые А. Н. Терениным в 1940 г. спектроскопические исследования химии поверхности и адсорбции ведутся во многих лабораториях. Получаемая информация особо важна в случае специфической молекулярной адсорбции, для которой теория еще недостаточно разработана. Необходимо сопоставление информации о составе и состоянии поверхности (изотопный обмен, спектры, электрофизические методы), об энергии адсорбции и вкладах в нее специфических взаимодействий и об изменениях в спектрах поверхностных соединений и адсорбированных молекул. Имеется постепенный переход от слабых специфических взаимодействий, вызывающих, однако, значительное перераспределение электронной плотности в молекулах и изменение их симметрии, до взаимодействий с полным переносом заряда. [c.204]

    Электронные спектры дают чувствительные методы обна ружения и идентификации свободных радикалов и являются многообещающим источником важной информации, касающейся уровней энергии свободных радикалов. Из изучения систем электронных полос были получены точные значения энергий электронных возбужденных состояний свободных радикалов. Из изучения колебательных и вращательных правил отбора оказалось возможным в определенных случаях получить информацию, касающуюся типов симметрии электронных состояний. Для некоторых простых свободных радикалов был проведен детальный колебательный и вращательный анализ спектра и получены точные значения колебательных и вращательных постоянных. Следует отметить, что из полного набора этих постоянных могут быть рассчитаны термодинамические свойства свободных радикалов. С помощью вращательных постоянных были определены длины связей и углы между ними, вращательные постоянные использовались для проверки предсказаний теории молекулярных орбит. В одном или двух случаях при изучении электронных спектров оказалось возможным получить сведения, касающиеся энергий диссоциаций и по- [c.64]

    Наилучшим введением в теорию информации до сих пор остается первая в этой области монография [23] , а также другое хорошее руководство Райсбека [24]. Симметрия молекулярного графа может [c.242]

    Комплексы без я-связей. На рис. 26.25 показано шесть симметричных о-орбиталей и приведены аналитические выражения для нормированных линейных комбинаций а-орбиталей отдельных лигандов, а также указаны соответствующие им по симметрии атомные орбитали металла. Слева на рис. 26.25 записаны символы, обозначающие симметрию этих орбиталей. Эти символы взяты из теории групп и соответствуют типу симметрии, к которому принадлежат орбитали металла, лигандов и образующиеся при их перекрывании молекулярные орбитали. Эти символы часто применяют как условные обозначения, но они сами по себе содержат полезную информацию о свойствах симметрии. Символом Ai всегда обозначают единственную орбиталь, которая обладает полной симметрией в отношении всех операций симметрии молекулярной системы означает пару орбиталей, эквивалентных друг другу, но по-разному ориентированных в пространстве, а — три эквивалентные, но различным образом ориентированные орбитали. Индексы g к и указывают, обладает ли орбиталь симметрией в отношении инверсии в центре сим1метрии g — сокращение немецкого слова gerade, т. е. четный) или же меняет знак при такой инверсии (и — от немецкого ungerade, т. е. нечетный). [c.96]


Смотреть страницы где упоминается термин Теория информации и молекулярная симметрия: [c.239]   
Смотреть главы в:

Химические приложения топологии и теории графов -> Теория информации и молекулярная симметрия




ПОИСК





Смотрите так же термины и статьи:

Информация

Теория информации

Теория симметрии



© 2025 chem21.info Реклама на сайте