Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теоретическое рассмотрение химической связи

    Процесс капиллярной пропитки пористого графита различными жидкими расплавами неоднократно подвергался экспериментальному и теоретическому изучению как на органических средах (в особенности на смолах и пеках в связи с проблемой уменьшения газопроницаемости графита), так и на жидких металлах при их химическом взаимодействии с графитом [46, с. 143-149 81]. Теоретическое рассмотрение процесса капиллярной-пропитки основано на решении задачи о течении жидкой среды по системе капилляров различных диаметров, моделирующей реальный пористый графит. [c.133]


    Метод молекулярных орбиталей справедливо считают наиболее плодотворным для химика-органика по сравнению со всеми другими методами теоретического рассмотрения химической связи. Тем не менее этот метод, если не считать нескольких известных исключений, использовался главным образом при исследовании статических свойств молекул (в основном и возбужденном состояниях). Возможности метода при рассмотрении реагирующих систем изучались очень редко. [c.7]

    ТЕОРЕТИЧЕСКОЕ РАССМОТРЕНИЕ ХИМИЧЕСКОЙ СВЯЗИ [c.31]

    Учитывая это обстоятельство, а также тот факт, что орбитальные энергии остовных АО при вхождении атома в молекулу понижаются, некоторые авторы делают неправильный вывод, будто никаких связывающих МО в молекуле нет вообще, а экзоэффект образования химической связи обусловлен понижением энергий орбиталей атомных остовов. Однако при этом забывают, что полная энергия многоэлектронной системы 01 не равна сумме орбитальных энергий (см. последний раздел главы I) и по одному лишь изменению величин е судить о том, как изменится полная энергия системы нельзя (ср. с рассмотренной в главе II ситуацией, относящейся к теоретической интерпретации Периодической системы атомов). Только в простейшем варианте метода МО — методе Хюк-келя — <01 = где — заселенность -й МО. [c.201]

    Теоретическое объяснение этого факта было предложено Слейтером и Полингом. Оии показали, что при качественном рассмотрении и расчете химической связи несколько различных орбиталей, не очень сильно отличающихся по энергии, можно заменить тем же числом одинаковых орбиталей, называемых гибридными. Волновая функция гибридной орбитали составляется из волновых функций валентных электронов, умноженных на некоторые коэффициенты. Так, гибридные волновые функции электронов углерода, [c.85]

    Из вышеизложенного очевидно, что периодичность заполнения электронных оболочек можно довольно хорошо представить себе, не рассматривая взаимодействия электронов между собой. Правда, не удается объяснить некоторые важные явления, которые лежат в основе, например, правила Хунда кроме того, нельзя определить строение даже такого простого атома, как гелий, в возбужденном состоянии. При изучении электронного взаимодействия прежде всего следует учитывать некоторые особенности рассмотренной в разд. 3.6 симметричной и антисимметричной волновой г1)-функции. Однако сначала рассмотрим эти чрезвычайно важные особенности (хотя они проявляются и в атоме гелия) взаимодействия на примере молекулы водорода —системы с двумя электронами. В следующей главе рассмотрены некоторые теоретические представления по проблеме образования химической связи. Следует лишь принять во внимание, что причины образования такого прочного атома, как гелий, те же, что и для молекулы водорода, как стабильной си- [c.59]


    Теоретическое объяснение этого факта было предложено Слэтером и Полингом. Они показали, что при качественном рассмотрении и расчете химической связи несколько различных орбиталей, не очень сильно отличающихся по энергии, можно заменить тем же числом одинаковых орбиталей, называемых гибридными. [c.91]

    Большинство учебников по органической химии можно разделить на два типа. К первому, классическому типу относятся такие, в которых материал излагается по классам органических соединений и лишь попутно поясняются механизмы рассматриваемых реакций. В некоторых из них изложению конкретного материала предшествует рассмотрение теоретических вопросов, касающихся природы химической связи, структуры органических соединений и некоторых проблем реакционной способности. [c.6]

    Для рассмотрения необходимого объема теоретических вопросов в небольшом (120 часов) курсе химии, читаемом на первых годах обучения (при отсутствии вступительных экзаменов по химии), потребовалось более широко использовать математический аппарат, так как это является необходимым условием краткости и логичности изложения. В данном учебном пособии также используется химическая термодинамика для рассмотрения гомогенных и гетерогенных равновесий и для оценки возможного направления процессов, Хотя вопросы строения атома и учение о химической связи изложены без квантово-механических расчетов, весь материал книги основан на современных представлениях о вец естве. Кроме того, этот материал будет дополняться в курсе физики, который эти проблемы по учебному плану рассматривает позднее. [c.3]

    На основе учения о строении атома, химической связи и строении молекул рассмотрен теоретический материал курса. Химия отдельных элементов дана в связи с их положением в периодической системе Д, И, Менделеева, [c.2]

    Хотя общее построение книги мало изменилось по сравнению с прежними изданиями, в него внесены некоторые важные изменения. Вводные главы перестроены так, чтобы в них рассматривалась химическая стереохимия и ряд экспериментальных аспектов химии. Это способствует более удобному размещению материала и позволяет дать теоретическую подготовку, необходимую на самых первых стадиях лабораторного практикума. Кроме того, рассмотрение строения атома и химической связи отодвигается на несколько более поздний период, когда студенты лучше подготовлены к восприятию довольно сложных рассуждений, которыми сопровождается изучение этих вопросов. [c.7]

    Условия для появления иного подхода к рассмотрению вопроса о химическом типе белковых молекул возникли лишь через 40-50 лет, после создания теоретических основ классической органической химии, где центральное положение заняла теория химического строения молекул (1861 г.). Суть теории сводилась к утверждению, сейчас очевидному, о существовании неразрывной связи между молекулярным строением соединения и его химическими свойствами, что по существу означало формулировку глобальной цели теоретической химии - раскрытие этой связи и установление ее природы. Автор теории А.М. Бутлеров постулирует положение, согласно которому можно предсказать химическое строение молекулы, т.е. все входящие в нее атомные группы и химические связи, если для данного соединения известны присущие ему химические реакции, и наоборот. На первое место, как необходимые, ставились реакции замещения, расщепления и синтеза. Таким образом, если это предположение справедливо, то все проблемы, возникающие при установлении строения органических молекул, становятся, по выражению Бутлерова, "разрешимыми путем химического опыта". Теория химического строения оказалась чрезвычайно плодотворной. Не встретив противоречий ни с одним из известных в то время опытных фактов, она открыла широчайшие перспективы для дальнейшего более целенаправленного развития органической химии. После появления стереохимической теории Я. Вант-Гоффа и Ж. Ле Беля (1874 г.) теория Бутлерова, как показала вся последующая [c.60]

    Сами по себе отдельные химические связи и отдельные молекулярные орбитали не являются наблюдаемыми объектами и представляют собой теоретические построения, притом принадлежащие разным уровням рассмотрения. Возникает вопрос существует ли общая теоретическая основа, на которой можно установить соответствие между картиной системы четырех равноценных связей и картиной четырех связывающих молекулярных орбиталей, из которых одна по симметрии и энергии отличается от трех остальных. [c.255]

    Нашей задачей является настолько подробное ознакомление читателя с подобными сопоставлениями, чтобы он смог не только проводить аналогичные сопоставления, но и самостоятельно развивать новые подходы. При сравнении теоретических и экспериментальных величин основное внимание уделяется, с одной стороны, качественному рассмотрению исследуемых свойств и процессов и, с другой стороны, количественной интерпретации экспериментальных данных. Такой подход необходим для обобщения полученных сведений, а также для вывода на основе обширных сводок экспериментальных данных эмпирических закономерностей, куда входят величины, получаемые из квантовохимических расчетов. Подобные закономерности могут использоваться также в качестве интерполяционных формул, позволяющих оценить значения экспериментальных характеристик для еще не синтезированных соединений, свойства которых интересны по той или иной причине. При этом открывается очень заманчивая возможность — использовать квантовую теорию химической связи не только для интерпретации данных, но и для их предсказания. [c.10]


    На рис. 17.2 указаны типы физико-химических явлений, в которых существенно проявляются слабые межмолекулярные взаимодействия. Вряд ли стоит пытаться оценить степень важности этих взаимодействий в тех или иных случаях. Однако следует отметить, что рис. 17.2 охватывает, с одной стороны, слу-чаи, когда речь идет, по существу, о парных взаимодействиях (например, комплексы с переносом заряда в газовой фазе), а с другой стороны, случаи, соответствующие взаимодействию больших совокупностей молекул (например, слои молекул в молекулярных кристаллах). Впрочем, оказывается, что и во втором случае (например, для процесса плавления молекулярного кристалла) можно оценить изменение внутренней энергии по данным об энергии парных взаимодействий и координационном числе отдельных молекул (см. ниже). Полное теоретическое рассмотрение проблем, схематически изображенных на рис. 17.2, включает не только вычисление энтальпийного члена (напомним, что энергия взаимодействия, определяемая из теоретических или эмпирических выражений, представляет собой внутреннюю энергию), но и вычисление методами статистической термодинамики энтропийного члена. Остается добавить, что существует постепенный переход между взаимодействиями, приводящими к образованию химической связи, и слабыми межмоле-кулярными взаимодействиями доказательством такой точки зрения является существование водородной связи. Можно полагать, что в этом случае важную роль играет вклад дисперсионных сил. [c.491]

    ВОДОЙ или водными растворами, наиболее существенной задачей является установление связи между непосредственным следствием поглощения излучения (ср. первичный акт в фотохимических процессах) и конечным наблюдаемым эффектом. К решению этой задачи можно подойти с двух сторон. Первый метод заключается в теоретическом рассмотрении вероятной судьбы частиц, возникающих при первичном радиационно-химическом акте, и возможных химических следствий этого акта. Согласно второму методу, число и природа первичных частиц выводится из наблюдаемых химических превращений и характера реакции. Такие доказательства становятся особенно убедительными, если аналогичные превращения могут быть вызваны в водных растворах хорошо исследованными процессами, протекающими без участия ионизирующего излучения, например фотохимическими процессами. Оба подхода использованы в настоящей статье. При изложении результатов, полученных по второму методу исследования, особенное внимание уделяется некоторым предварительным данным, касающимся полимеризации виниловых соединений в разбавленных водных растворах под действием излучения. [c.98]

    В 1931 г., одновременно с появлением работы Слейтера немецкий исследователь Ф. Хунд [103] сделал важный шаг для создания квантовохимических методов расчета распределения электронов в органических молекулах. Сравнив различные способы теоретического рассмотрения природы химической связи, он классифицировал химические связи на ньше обш епринятые о- и зх-связи. И, что самое главное для изучения органических соединений, Хунд выдвинул гипотезу, что о-связь прочнее л-связи. Опираясь на эту гипотезу, немецкий ученый [c.42]

    В этих условиях издание монографии Тота, хорошо известного своими фундаментальными работами в области тугоплавких металлов и их соединений, несомненно, своевременно. Интерес к этой книге в первую очередь вызван тем, что в ней систематизированы и критически проанализированы результаты экспериментальных и теоретических исследований, отражающих связь между атомными характеристиками компонентов и физико-химическими свойствами карбидов и нитридов. При этом особенно большое внимание уделено углубленному рассмотрению физической сущности обсуждаемых явлений. [c.6]

    Рассмотренные выше представления о волновых функциях и орбиталях являются теоретической основой для понимания природы химической связи, строения и реакционной способности органических соединений и будут использованы при описании всего последующего материала органической химии. [c.22]

    При теоретическом рассмотрении химических реакций часто предполагается, что реагирующие молекулы могут быть охарактеризованы равновесной максвелл-больцмановской функцией распределения по скоростям и внутренним состояниям, хотя уже со времени формулировки основных понятий об элементарных процессах сознавали, что реакция вызывает нарушение равновесного распределения. Это нарушение связано с тем, что реакционноспособными оказываются только те молекулы, энергия которых превышает некоторую предельную величину, так что функция распределения непрерывно обедняется в высокоэнергетической части за счет исчезновения прореагировавших молекул. Это обеднение в какой-то степени восстанавливается в результате молекулярных столкновений, и нарушение равновесного распределения будет малым только в том случае, если скорость восстановления равновесного распределенид намного превышает скорость его нарушения за счет химической реакции. [c.135]

    Важность этого представления для теории химической связи трудно переоценить. Не случайно поэтому, немецкие ученые В. Гайтлер и Ф. ЛондОн свою известную статью 1927 г. Взаимодействие нейтральных атомов и гомеополярная связь с точки зрения квантовой механики , с которой берет начало современная квантовая химия, начали словами Взаимодействие между нейтральными атомами до сих пор представляло большие трудности для теоретического рассмотрения. Развитие квантовой механики дало для разработки этой проблемы совершенно новую точку зрения прежде всего в новой модели распределение заряда полностью отлично от модели Бора, что уже влечет за собой совершенно новое соотношение сил (Кгаиезр1е1) между нейтральными атомами . [c.142]

    Гибридизация одной s- и трех р-орбиталей (sp -гибридизация), как уже указывалось, объясняет валентности углеродного атома. Образование sp -гибридных связей характерно также и для аналогов углерода — кремния и германия валентности этих элементов также имеют тетраэдрическую направленность. Может возникнуть вопрос — если гибридные орбитали обеспечивают большую концентрацию электронного облака между ядрами и, следовательно, более прочную связь, то почему они не возникают в НаО л NH3 На да шый вопрос следует ответить, что направленность связей в этих соединениях также можно объяснить sp -гибридизацией. Такой подход является даже более точным, чем изложенный на стр. 161 и 162. Не следует, однако, забывать, что оба подхода являются приближенными. При образовании молекулы HjO атом кислорода люжет приобретать конфигурацию наружного слоя где Ф2, Фз и — sp -гибридные волновые функции верхние индексы указывают количество электронов, занимающих данную орбиталь. Таким образом, две из четырех гибридных орбиталей атома кислорода заняты неспаренньши электронами и могут образовать химические связи угол между этими связями должен составлять 109,5°. Это значение ближе к экспериментальному (104,5°), чем величина 90°, даваемая схемой, рассмотренной на стр. 161. Однако если на стр. 161—162 пришлось объяснять отклонение теоретической величины от экспериментальной для молекулы HjO, то здесь нужно объяснить, почему углы между связями у аналогов воды HjS, HaSe и НаТе заметно отличаются от 109,5°. Это объясняется действием ряда факторов. В частности, в соединениях, содержащих большие атомы, связь слабая и выигрыш энергии в результате образования связи гибридными орбиталями не компенсирует некоторое возрастание энергии s-электронов, обусловленное их переходом на sp -гнбридные орбитали. Это препятствует гибридизации. Кроме того, как показали точные расчеты, при образовании связи Э—Н 25-орбитали кислорода (и азота) сильнее перекрываются с ls-орбиталями водорода, чем 2р-орбита-ли. Для аналогов кислорода, наоборот, сильнее перекрываются р-орбитали. Это обусловливает больший вклад s-состояний (гибридизацию) в образование химической связи в молекуле Н О, чем в ее аналогах. Поэтому валентные углы в H2S, HjSe и НаТе близки к 90°. [c.168]

    На основе учения о строении атома, химической связи и строении молекул рассмотрен теоретический материал курса. Химия отдельных элементов дана в связи с их положением в периодической системе Д. И. Менделеева. Больше внимания, чем во втором издании (1976 г.) уделено строению вещества, протоли-тической теории кислот и оснований, введен параграф Производство минеральных удобрений и глава Охрана окружающей среды и утилизация побочных продуктов химической промышленности . [c.296]

    В подробном обзоре Полинга [107] рассмотрению химических свойств органических соединений при помощи метода валентных связей уделено значительно меньше внимания. В этом обзоре Полинг применил метод многоструктурного изображения молекул, которым невозможно приписать классическую единственную формулу. Тогда свойства молекулы, по мнению Полинга, соответствуют различным валентным структурам, причем следует учесть, что в результате самого резонанса получается добавочная стабильность. Этот метод позволяет сопоставлять (и понять ) результаты опытов по изучению химических и физических свойств таких молекул и предсказывать эти свойства совершенно так же, как это делается по отношению к молекулам, которым можно приписать лишь одну структурную формулу [107, стр. 1329—1330]. Приписывание какому-либо соединению нескольких формул должно аргументироваться, по мнению Полинга, или теоретически, или сопоставлением с экспериментальными результатами. [c.43]

    Для рассмотрения необходимого объема теоретических вопросов в небольшом (120 часов) курсе химии, читаемом на первом году обучения, потребовалось применить математический аппарат более широко, чем это делалось до сих пор, так как это является необходимым условием краткости и логичности изложения. В настоящем курсе химии более широко используется также химическая термодинамика, включая и понятие о правиле фаз. Хотя теория строения атомов и учение о химической связи излагаются без квантовомеханических расчетов, весь материал книги основан на современных представлениях о веществе. Кроме того, материал, изложенный в курсе химии, может быть воплощен в,виде расчетных схем, поскольку в курсе физики (который по учёбному плану рассматривает эти проблемы значительно позже) используется аппарат квантовой механики. [c.3]

    При рассмотрении химических процессов приходится решать два главных вопроса Во первых, может ли в данных условиях произойти определенный процесс, и, во вторых, с какой (щдростью он произойдет В связи с этим возникают следующие теоретические проблемы установление связи возможного наг(равления процесса с природой реагентов, механизма процесса влг кние различных факторов на механизм и скорость а также практические задачи касающиеся выбора условии и способов оо ществления процессов, обеспечивающих необходимую эффективность [c.364]

    В процессах денатурации и ренатурации аминокислотной последовательности проявляется прямая связь между химическим и пространственным строением молекулы белка. Переход беспорядочно флуктуирующей белковой цепи в детерминированную трехмерную структуру и обратный процесс - переход нативной конформации белка в состояние статистического клубка есть не что иное, как формирование и разрушение тех самых внутриостаточных и межостаточных взаимодействий валентно-йесвязанных атомов, теоретическому рассмотрению и априорному расчету которых были посвящены предшествующие главы книги. Очевидно, изучение механизмов денатурации и ренатурации представляется совершенно необходимым для познания принципов структурной организации белковых макромолекул. С другой стороны, любая теоретическая разработка проблемы пространственного строения белков не может считаться завершенной без описания и аргументированной трактовки особенностей уникального процесса свертывания аминокислотной последовательности в высокоорганизованную структуру. [c.471]

    При небольших концентрациях растворителя (начальная стадия растворения или набухания) число способов расположения белых шаров в обоих случаях одинаково, так как белые шары могут занять какое угодно положение, обмениваясь местами с черными шарами. При более высоких концентрациях растворителя число способов расположения белых шаров в системе больше в том случае, когда черные шары не связаны между собой, поскольку химические связи между звеньями ограничивают возмож-1гость обмена рис. 169). Такое качественное рассмотрение раствора, данное Мейером , было положено в основу теоретических расчетов Флори и Хаггинса. [c.384]

    Об этом свидетельствовал статистический характер явления, убедительно доказанный упомянутыми работами Тамманна, Отмера и Г. Корнфельда. Эти представления были использованы также при теоретическом рассмотрении вопроса Ф. Габером [18] в связи с исследованием аморфных осадков и кристаллических золей . В качестве критерия служила способность последних давать четкие интерференционные кольца при использовании метода Дебая — Шеррера. Оба типа твердых фаз возникали в условиях пересыщения. В реакции осаждения первая стадия химического [c.27]

    Предыдущий пример показывает, что наличие или отсутствие (в более общем случае — величина) изотопного эффекта зависит от того, с разрывом каких связей сопряжена данная химическая реакция. К этому заключению приводит также и теоретическое рассмотрение кинетического изотопного эффекта [491, 492]. В частности, из расчета следует, что отношение констант скорости распада изотопных молекул бромистого этила СНд СНзВг и СНз СНаВг на этильный радикал и атом брома к к не может быть меньше корня. квадратного из отношения приведенных масс этих молекул, т. е. кГк — 1,036. Для распада же обеих изотопных молекул бромистого этила на этилен (СНг = СН,2 и СНз СНа) и бромистый водород расчет дает кГк — 1,003. [c.49]

    Известная приближенность теоретических расчетов химических сдвигов и некоторая произвольность в выборе значений параметров (в частности, полярности сигма-связи С — F) делают эти расчеты мало иригодны.ми для количественных вычислений. Однако качественные выводы, которые можно сделать на основании рассмотренных выше теоретических соотношений, имеют большое значение для понимания электронной природы корреляции между химическими сдвигами Р -производных фторбензола и ст-констаи-тами заместителей. С этой целью сопоставим уравнения Тафта (VII.7), (VII.8) с теоретическими уравнениями (VII.10) и (VII. 11). Основные выводы сводятся к следующему. [c.390]

    При теоретическом рассмотрении зависимости между потенциалами полуволн гетероциклических систем и их химической структурой был использован простой метод МО ЛКАО [85, 86]. Например, для восстановления альдегидов типа С4НзО(СН = = СН) СНО (производные фурана, п=0, I, 2) показана удовлетворительная корреляция между потенциалом полуволны, экстраполированным к рН = 0, и разностью энергий я-электронов начального и конечного состояний (конечным состоянием здесь является радикал, образующийся после присоединения к карбонильной группе электрона и протона). Справедливо следующее уравнение 1/2=—2,80 + 4,32(0 (значение со см. [86]). Аналогично было рассчитано влияние индуктивного эффекта на потенциал полуволны 1-, 2-, 3- и 4-метоксиксантонов [87]. Полученные таким образом потенциалы полуволн находятся в превосходном соответствии с ожидаемыми значениями, исключая 1-метоксиксантон, для которого предполагается наличие водородной связи. Однако для изомерных альдегидов пиридина указанная выше зависимость не имеет места. [c.273]

    Несомненно, что связь в соединениях инертных газов можно понять в рамках обычных полуэмнирических методов квантовой химии. Для понимания природы химической связи в таких молекулах не требуется привлечения новых принципов. В настоящее время невозможно полное априорное теоретическое рассмотрение [c.55]

    Теория электронных смещений, как об этом очень определенно высказался Инголд (стр. 125) — это химическая теория электронного строения и реакционной способности органических соединений. Естественно сопоставить ее с физическими теориями, о которых также упоминает Инголд. Для этих теорий характерно — делать выводы о строении молекул, исходя из физических представлений о строении атома, о свойствах электрона, о природе валентности и химической связи. В главе И, а особенно в главе И1 мы уже встречались с примера.ми построения теории строения органических соединений поэтому принципу. Однако в то вре.мя физический фундамент подобных теорий не был разработан в достаточной степени. Иное положение создалось после возникновения квантовой механики. Теории, построенные на ее основе, продолжают успешно развиваться и в наши дни, оказывая глубокое влияние на всю теоретическую органическую химию. Этим теориям посвящены следующие главы. В заключительной главе физические теории сопоставлены с химической теорией электронных смеп1еннй, рассмотренной в настоящей главе, чтобы сделать выводы о перспективах развития современной электронной теории строения и реакционной способности органических соединений. [c.155]

    Этот факт создает некоторое совершенно особое представление о сущности химической связи, химических взаимоотношений. В этой связи я с удовольствием выслушал здесь призыв к рассмотрению агрегатности и отношения данных молекул к среде. Мы убедились, что вещество, теорию строения которого мы хотим обсуждать, более лабильно, чем мы привыкли это думать, и это является тем камнем преткновения, который мешает нам теоретически обогнать или хотя бы догнать синтетическую практику. [c.201]

    Во введении к этой главе, посвященной рассмотрению природы сил комплексообразования, было отмечено, что существуют два предельных тппа химической связи, а именно гетеронолярный и гомео-полярный. До снх пор мы рассматривали теоретические построения, в которых координативная связь расценива.пась, как гетерополярная. Мы могли убедиться в том, что такой подход с добавлением поляризационных представлений дает очень много. Однако к коор- [c.292]


Смотреть страницы где упоминается термин Теоретическое рассмотрение химической связи: [c.173]    [c.72]    [c.274]    [c.297]    [c.2]    [c.383]    [c.305]    [c.19]    [c.62]    [c.462]    [c.29]    [c.396]   
Смотреть главы в:

Органические аналитические реагенты -> Теоретическое рассмотрение химической связи




ПОИСК





Смотрите так же термины и статьи:

Химическая связь

Химическая связь связь

Химический связь Связь химическая



© 2025 chem21.info Реклама на сайте