Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О современном развитии неравновесной термодинамики

    Процесс дифференциации наук привел к формированию на границе геохимии и физической химии нового направления, получившего название физической геохимии. Ряд авторов Доливо-Добровольский В. В., 1967 Смит Ф. Г., 1968] считают, что это раздел геохимии, занимающийся изучением природных фазовых реакций на основе равновесного термодинамического метода. Между тем, смежные науки, на границе которых возникла физическая геохимия, не ограничиваются изучением лишь химических равновесий. В физической химии интенсивно развивается неравновесная термодинамика, в которой рассматривается развитие необратимых процессов в пространстве и времени Одна из основных задач геохимии, по В. И. Вернадскому и А. Е. Ферсману,—< изучение миграции веществ в земной коре. Данные обстоятельства. необходимо учитывать при обсуждении предмета (что делать) и метода (как делать) физической геохимии на современном этапе ее развития. [c.5]


    По современным представлениям, экосистемы - открытые неравновесные термодинамические системы, которые постоянно обмениваются с окружающей средой энергией и веществом, уменьшают энтропию внутри себя, но по законам термодинамики увеличивают ее вовне. Они формируются в результате длительной эволюции, находятся в постоянном развитии, но относительно стабильны во времени, способны к саморегуляции и до некоторого предела противостоять изменениям окружающей среды. [c.16]

    Проведенное рассмотрение показывает, что неравновесная термодинамика является мощным инструментом исследования транспортных свойств ионообменных мембран. Основным достоинством этой науки является то, что она позволяет обозреть все явления переноса через мембрану с единых теоретических позиций и стать, таким образом, фундаментом, отталкиваясь от которого, можно проводить более детальное изучение свойств мембраны и мембранных систем. Важным преимуществом является простой математический аппарат, приводящий к линейным уравнениям со сравнительно небольшим числом феноменологических коэффициентов. Не совсем четкий смысл этих коэффициентов, особенно перекрестных, вполне компенсируется параллельным рассмотрением фрикционной модели, приводящей к идентичным уравнениям переноса. Анализ концентрационных зависимостей коэффициентов проводимостиу, сопротивления / ,у и фрикционных коэффициентов А2,ухарактере взаимодействий компонентов мембраны. Что касается количественных оценок с помощью данной модели, то здесь в последние годы достигнут заметный прогресс. Благодаря усилиям многих исследователей, в первую очередь Мирса и Наребской с сотрудниками, решена задача идентификации уравнений переноса ТНП определен набор экспериментов и разработаны методы их обработки, позволяющие численно определять феноменологические коэффициенты переноса в зависимости от концентрации внешнего раствора. Использование этих данных для расчета потоков частиц через мембрану при современном развитии вычислительной техники представляется уже несложной задачей, особенно если воспользоваться концепцией виртуального раствора. Использование этой концепции позволяет заменить при решении дифференциальных уравнений переноса зависимость феноменологических коэффициентов от координаты на их зависимость от концентрации. Необходимо обратить внимание на то, что использование концепции виртуального раствора позволяет существенно упростить постановку и решение сопряженных краевых задач, учитывающих одновременно транспорт ионов в мембране и омывающем ее растворе. Традиционным в такого рода задачах является запись уравнений Нернста-Планка в мембране и окружающих ее диффузионных слоях и в использовании в качестве условий сопряжений на границах мемфана/раствор соотношений Доннана отдельно для скачка потенциала и для скачка концентрации. Применение же уравнений переноса типа (2.123) или (2.151) и выражения (2.129) для градиента потенциала подразумевает использование в качестве условий сопряжения условия непрерывности концентрации и потенциала. Условие непрерывности электрохимического потенциала, лежащее в основе соотношений Доннана, выполняется при этом автоматически. [c.130]


    Систематизированный таким образом научный материал позволит читателю ознакомиться с успехами химии на каждом ее этапе — от истоков в древней натурфилософии до новейших достижений последней четверти текущего столетия. Это придает настоящему изданию действенный методологический характер. Чтобы правильно оценить нынешнее состояние химических знаний и предвидеть перспективы нашей науки, мы должны хорошо знать прошлое, отчетливо представлять себе дальнейшие пути научно-технического прогресса. Для того чтобы знать, что будет, надо знать, что было. Настоящее издание вносит весомый вклад и в решение этой, более общей, задачи. Выяснение тенденций развития химии осуществляется здесь посредством анализа взаимосвязей науки и производства, которые, как это с очевидностью следует из хронологии событий, усиливаются при переходе от ранних этапов истории химии к современности. Длительный период раздельного существования химических ремесел, с одной стороны, и натурфилософских толкований химизма, с другой — сменяется периодом формирования научной химии, явившейся уже в трудах Пруста и Бертолле, Дэви и Берцелиуса, Гей-Люссака и Тенара фундаментом становления также и химической технологии как науки. С появлением же структурной химии, открытием Менделеевым периодического закона, а в особенности с возникновением химической термодинамики и кинетики, происходит все более тесное сближение химии и химической технологии, обусловившее создание высокопроизводительных процессов получения самых разнообразных продуктов. Материал справочника показывает, что в исследованиях сегодняшнего дня — особенно тех, которые относятся к металлокомилекс-ному и ферментативному катализу, плазмохимии, кинетике неравновесных и нестационарных процессов, математическому моделированию технологических процессов,— все отчетливее просматриваются контуры химии и химической технологии грядущего столетия. [c.3]

    Книга состоит из трех частей. В первой части рассмотрены история экспериментальных исследований пространственного строения синтетических полипептидов и белков и складывающиеся на этой основе представления об их молекулярной структурной организации. Особо выделены три события, во многом определивших последующее развитие этой области и становление самой молекулярной биологии. Первые два вызваны появлением в 1951 г. работ Л. Полинга и Р. Кори и в 1959 г. работы У. Козмана, которые сразу же обратили на себя внимание научной общественности и оказали сильное стимулирующее влияние на теоретическое и экспериментальное изучение пространственного строения белков. Третье событие произошло на рубеже 1950—1960-х годов и было связано с расшифровкой Дж. Кендрью и М. Перутцем трехмерных структур первых белковых молекул. Наибольшее внимание в первой части, как и в двух других, уделено анализу современных исследований и перспективам развития. Вторая часть книги посвящена детальному анализу эмпирического подхода к предсказанию вторичных структур и более высоких уровней пространственной организации глобулярных белков. В отдельной главе отмечены перспективы развития этого подхода. В третьей части изложена история исследований механизма свертывания белковой цепи в нативную конформацию в условиях in vitro и in vivo. В последней главе рассмотрена общая теория структурной самоорганизации белка, разработанная на основе нелинейной термодинамики неравновесных процессов. [c.6]

    Развитие современной термодинамики началось с формулировки ряда постулатов, которые не могут быть строго обоснованы в рамках макроскопических представлений и не являются столь же широкими обобщениями, как первые три начала термодинамики. Можно тем не менее утверждать, что выдвинутые положения, которые рассматриваются ниже, справедливы по крайней мере в случае малых отклонений от равновесия. Вместе с известными началами классической термодинамики новые положения, прюдставляющие собой обобщения соответствующих экспериментальных данных, составили теоретическую основу линейной термодинамики неравновесных процессов. В отличие от равновесных статистических ансамблей характеристики неравновесных макроскопических систем изменяются со временем, а термодинамические параметры имеют разные значения в различных точках системы, т.е. зависят от координат. Существование в системе разности величин какого-либо интенсивного параметра (температуры, давления, концентрации) ведет к возникновению потока некоторого экстенсивного параметра (в конечном счете, вещества и энергии). Скорость переноса экстенсивной величины вследствие выравнивания интенсивного фактора в реальных условиях не будет бесконечно малой, как в случае равновесного, обратимого процесса. К типичным примерам неравновесной системы такого рода можно отнести поток газа при наличии градиента плотности поток жидкости, вызванный разностью гидростатических давлений поток тепла (теплообмен) под действием градиента температуры, поток заряженных частиц в электрическом и магнитном полях и т.д. [c.443]


    В классической физике и квантовой механике, включая и релятивистскую механику, время, как уже отмечалось, выступает лишь как внешний параметр, не имеющий выделенного направления. В классической и квантовой динамике нет ничего такого, что позволило бы отличить прошлое от будущего. Такую динамику Пригожин назвал физикой существующего, а современную, в значительной мере созданную им термодинамику, - физикой возникающего. Даже равновесная термодинамика уже содержит специальную функцию состояния - энтропию, наделяющую время определенным направлением. Энтропия - это стрела времени, устанавливающая различие между прошлым и будущим. Нелинейная термодинамика неравновесных процессов идет в этом отношении еще дальше и формирует новое представление о времени как внутренней переменной, присущей данной макроскопической системе и отражающей ее историю. Такое время в отличие от внешнего времени характеризует эволюционное состояние системы, пройденные ею этапы развития. Еще Аристотель различал время как "движение" (кинезис) и время как "рождение и гибель" (метаболе). Возраст живого организма может определяться астрономическим временем, а может - внутренним, биологическим временем, не совпадающим с внешним временем, хотя и выраженным в тех же единицах. Два организма одного вида, рожденные одновременно (даже однояйцевые близнецы), имеют одинаковый возраст в масштабе внешнего, астрономического времени и в зависимости от условий созревания могут иметь разный возраст в масштабе внутреннего времени, ха- [c.458]


Смотреть главы в:

Химическая термодинамика -> О современном развитии неравновесной термодинамики




ПОИСК





Смотрите так же термины и статьи:

Неравновесный ЯЭО



© 2025 chem21.info Реклама на сайте