Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химия квантовая структурная

    В книге впервые в отечественной литературе обсуждается применение эффективных методов теории графов в структурной химии, химической кинетике и химической физике полимеров. На языке теории графов удобно представляется ряд неэмнирических и нолуэмпирических методов квантовой химии, облегчается качественное понимание взаимосвязи структуры и свойств молекул. В задачах химической кинетики графовая техника позволяет, проводить детальный анализ стационарных и нестационарных кинетических зависимостей, устанавливает связь кинетического поведения и структуры механизма сложной реакции. Методы теории графов существенно упрощают решение многих традиционных задач химической физики полимеров, в частности задач, требующих учета пространственной структуры полимера. [c.2]


    Спектроскопия ядерного квадрупольного резонанса (ЯКР), относящаяся к радиоспектроскопическим методам, и метод мессбауэровской спектроскопии, называемый также методом ядерного гамма-резонанса (ЯГР), используются в структурных исследованиях и позволяют получать уникальную информацию о распределении электронной плотности и характере химических связей по сдвигам резонансных сигналов ядер и параметров градиента неоднородного электрического поля на ядрах, создаваемого электронным окружением. Эти данные важны как опорные для теоретической и квантовой химии. Оба метода применимы для исследования только твердых образцов. Исключительно высокая чувствительность обоих методов к малейшим изменениям электрических полей открывает возможность исследования широкого круга проблем, связанных с внутри- и межмолекулярными взаимодействиями. [c.87]

    Подобных структурных формул классическая химия не знала. Не знала их и квантовая химия до [c.121]

    Как и в других областях физики и химии, в теории строения атома было предложено большое число теоретических моделей, и, конечно, в будущем будут появляться и другие модели. Каждая следующая модель обычно была в том или ином смысле лучше пре-дыдущих. Однако ни одна из них не получила такого всемирного признания, как предложенная в 1913 г. Нильсом Бором модель водородоподобных атомов . Используя структурную идею атома Резерфорда, Бор с успехом применил концепции квантовой теории для объяснения как происхождения линий спектра, так и устойчивости атома. [c.29]

    Представления о преобладании дискретности химической организации вещества оставались ведущим мотивом в развитии химии в течение всего XIX в. и по крайней мере первой четверти XX в., т. е. до появления квантовой химии. Нельзя сказать, однако, что кривая эволюции этих представлений неизменно поднималась вверх. Пожалуй, апогеем их развития явилась кекулевская теория валентности (1858) и вытекающие из нее формульный схематизм и аддитивный способ мышления в структурной химии, о достоинствах и недостатках которых см. ниже. Абсолютизируя дискретность как одну только — предметную — сторону действительности, названные представления время от времени должны были отступать и в самом деле отступали под натиском идей, отражающих также и вторую — процессуальную — сторону объективной реальности. При этом последние идеи, представляя собой диалектическую противоположность по отношению к атомистике Д, Дальтона, отнюдь не являлись ее альтернативой они включали в себя ее как частность. Каким же тернистым, однако, был их путь к победе  [c.63]


    Еще более интересные перспективы открываются на уровне структурной неорганической химии. Ввиду того, что изучение неорганических веществ в течение целого столетия (примерно 1830— 1930-е годы) осуществлялось в русле классических представлений о молекулах, которых в подавляющем большинстве неорганических соединений в действительности не существует, развитие неорганической химии происходило в основном лишь на уровне учения о составе, На структурный уровень оно поднялось лишь в связи с появлением квантовой механики не ранее 1930-х годов, т. е. со столетним опозданием по сравнению с органической химией. Если учесть то обстоятельство (о нем говорилось в гл. IV), что и сегодня еще в изучении твердого тела не исчезли рудименты преклонения перед стехиометрической химией, то успехи современной химии твердого тела, как, впрочем, и успехи химии комплексных соединений, можно квалифицировать лишь как первые шаги в познании глубин сложного строения неорганических тел. [c.274]

    Чтобы не оказаться в стороне от современной линии развития структурной теории, химик должен иметь ясное представление о существе и приложениях методов квантовой химии к задачам теории, [c.377]

    Вопрос о том, какой уровень приближения следует выбрать для решения той или иной задачи, решается в прямой зависимости от характера последней. Большая часть задач теоретической химии носит качественный характер, и ответы на них могут быть получены при помощи весьма простых расчетов, воспроизводящих лишь самые главные свойства волновых функций (узловые характеристики и порядок энергетических уровней граничных МО). Другая часть задач требует точной количественной оценки какого-либо одного или нескольких структурных и физических параметров (теплоты образования, электронного спектра поглощения и т. д.), тогда как остальные свойства молекулы могут быть оценены менее точно. Обе эти группы задач, как правило, целесообразно решать, используя так называемые полуэмпирические методы квантовой химии, в которых вычисления ряда интегралов в уравнениях (4.62) заменяются подстановкой эмпирических параметров, а большей частью этих интегралов вообще пренебрегают. Некоторые современные полуэмпирические методы обладают достаточно большой гибкостью, т. е. параметризованы таким образом, что позволяют с хорошей точностью предсказывать целый ряд свойств основных и возбужденных электронных состояний молекул при довольно малых затратах машинного времени. [c.204]

    Орбитали выбирают так, чтобы отталкивание между электронными парами было минимальным. Идея гибридизации в сущности является продуктом синтеза концепций структурной теории с принципами квантовой механики. Квантовая теория не предусмотрела равноценности валентных сил в таких молекулах, как, например, молекула метана ее тетраэдрическая структура тоже не была этой теорией предсказана. Концепция гибридизации разрешила эти затруднения, не войдя в противоречия ни с химией, ни с квантовыми законами. [c.114]

    Получение опорных структурных данных для углубленной разработки тех или иных сторон теории химической связи. Весьма часто в результате структурного исследования, проведенного для рещения тех или иных частных химических задач, выдвигается качественная теоретическая концепция, позволяющая интерпретировать отдельные специфические стороны строения исследованного вещества. Необходимость проверки и подтверждения выдвинутой гипотезы, оценки круга объектов, в которых она должна проявляться, вызывает поток дальнейших структурных расшифровок родственных кристаллических веществ. Так проблемы теории химической связи, квантовой химии становятся целью рентгеноструктурного анализа. [c.132]

    Более конкретные формулы и схемы использования структурных задач в квантовой химии зависят от метода, принятого при решении уравнения Шредингера системы. [c.143]

    В приложении квантовой (волновой) механики к проблеме химической связи в органических соединениях в настоящее время сосуществуют два подхода. В одном из них ковалентную связь представляют себе как пару электронов с антипараллельными спинами называют такой подход методом валентных связей или методом локализованных электронных пар. В основе своей такой подход является переводом на электронный язык привычной картины структурной органической химии. [c.39]

    Вторая система — структурных теорий — возникает с появлением атомно-молекулярной концепции строения вещества. Проблема реакционноспособности решается теперь на основе не только знания химического состава вещества, но и его строения. В современной химии — это квантово-механические теории строения атома, химической связи и строения вещества (гл. 4, 6, 7, 11-12, 16). [c.28]

    Теоретический расчет теплоты образования веществ является одной из важных задач квантовой химии Однако состояние квантово-химических расчетов таково, что вычисление теплоты образования веществ различных структурных типов с химической точностью ( 4 кДж/моль) далеко не всегда возможно [c.324]


    Четвертое издание книги, как и третье, состоит из следующих частей Термодинамика , Динамика , Квантовая химия , Строение твердого тела . Общее число глав не изменилось по сравнению с предыдущим изданием, но включены три новые главы, а материал глав Газы , Другие структурные методы и Ядерная и радиационная химия рассредоточен по другим разделам. Заново написаны главы Ионные равновесия и биохимические реакции (гл. 7), Спектроскопия магнитного резонанса (гл. 16) и Макромолекулы (гл. 20). Соответствующие разделы были в книге и раньше, но в настоящем издании им уделяется больше внимания, что отражает повышенный интерес к применению физической химии для решения биологических задач, а также возросшую роль методов ядерного магнитного и электронного парамагнитного резонанса. Перечисление всех существенных изменений в разных главах заняло бы слишком много места, поэтому я упомяну лишь о более подробном изложении квантовой теории, электронной структуры молекул, фотохимии и химии твердого тела. [c.6]

    Ранее было отмечено, что структурная организация живой и неживой природы построена согласно принципам унификации и комбинации и включает явления трех типов. Оба принципа (редукционизма и холизма) оказались в основе научного поиска и нашли отражение в логике, как в науке о закономерностях и формах научного и философского мышления, так и в методе анализа индуктивного и дедуктивного способов рационалистической и эмпирической деятельности человека. На индуктивном способе мышления основывается разработка целого ряда научных дисциплин, например квантовой механики атомов и квантовой химии молекул. Фундаментальные положения этих наук базируются в основном на результатах изучения соответственно простейшего атома (Н) и простейшей молекулы (Н2), а также ионов Н , ОН . Тот же способ мышления в биологии лег в основу исследований, приведших к становлению и развитию формальной и молекулярной генетики, цитологии, молекулярной биологии, многих других областей. При дедуктивном способе мышления, ядро которого составляет силлогистика Аристотеля, новое положение выводится или путем логического умозаключения от общего к частному, или постулируется. Классическим примером дедукции может служить аксиоматическое построение геометрии. Мышление такого типа наглядно проявилось в создании периодической системы элементов - эмпирической зависимости, обусловливающей свойства множества лишь одним, общим для него качеством. Д.И. Менделеев установил, что "свойства элементов, а потому, и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от их атомного веса" [21. С. 111]. Тот же подход лежит в основе построения равновесной термодинамики и статистической физики. Оба способа мышления, индуктивный и дедуктивный, диалектически связаны между собой. Они вместе присутствуют в конкретных исследованиях, чередуясь и контролируя выводы друг друга. [c.24]

    Небезынтересно отметить, что вопросы строения квантовой химии и ее места в системе теоретической химии могут рассматриваться как более общие по отношению к вопросам, возникшим на заре квантовой химии по поводу соотношения предметов физики и химии. Системно-структурный подход к квантовохимическому знанию приводит к выделению структур назгчного знания, наиболее типичных для физики и для химии. [c.8]

    Не следует забывать, что химия исследует вещество только в одном из аспектов. Изучая состав, химические свойства, способы получения твердых веществ, мы не можем обходиться без представления об их электронной конфигурации, кристаллической структуре, без знания закономерностей, которым подчиняются изменения физических свойств с изменением энергетического состояния вещества, словом без физической теории и без физических экспериментов. Химия, физика твердого тела и молекулярная биология — по определению физика-теоретика айскопфа — являются непосредственным следствием квантовой теории движения электронов в кулоновском поле атомного ядра. Все многообразие химических соединений, минералов, изобилие видов в мире организмов обусловливается возможностью расположения в достаточно стабильном положении сравнительно небольшого количества первичных структурных единиц — атомов — огромным количеством способов, диктуемых пространственной конфигурацией электронных волновых функций. Длина связи, т. е. межатомное расстояние,— это диаметр электронного облака, определяемый амплитудой колебания электрона в основном состоянии. Поскольку масса ядра во много раз больше массы электрона, соответствующая амплитуда колебания ядра во много раз (корень квадратный из отношения масс) меньше. Поэтому, как отмечает Вайскопф, ядра способны образовывать в молекулах и кристаллах довольно хорошо локализованный остов, устойчивость которого измеряется энергией порядка нескольких электронвольт, т. е. долями постоянной Ридберга. Местоположения ядер атомов, образующих остов кристалла, с большой точностью определяются методом рентгеноструктурного анализа. Таким образом, бутлеровская теория строения, структурные формулы в наше время получили ясное физическое обоснование. [c.4]

    Рассуждения Дальтона о порядке связей атомов в частице и о характере самих связей представляют собой поистине увертюру к структурной химии всего XIX в., ибо в них содержится основной мотив, вошедш ий во многие ст1)уктурные теории. Это объясняется тем, что системные представления о составе, структуре и свойствах, определяющие основные атрибуты молекулы как единой (теперь мы бы сказали — единой квантово-механической) системы, нераздельны. Эта их нераздельность, или слитность, предполагает необходимость изучения отношения ка.к попарно, так и в целом всех углов треугольника. И поэтому осуществлеиное Дальтоном глубокое исследование отношений между составом и структурой. ири наличии богатой информации об отно[пениях между составом и свойствами послуж или достаточным основанием для выхода полученных результатов в качестве своеобразного прогноза на уровень второй концептуальной системы, назначением которой является уже изучение отнотиемий между структурой и свойствами. [c.76]

    Существует еще много других физических методов исследования структуры молекул. Теснейшим партнером ИК-спектроскопии является спектроскопия комбинационного рассеяния света (КР). Структурную информацию получают также из микроволновых (МВ) спектров. В последние годы быстро развивается фотоэлектронная спектроскопия (ФЭС), основанная на анализе электронов, выбитых из вещества под действием излучения. Спектроскопия электронного парамагнитного резонанса (ЭПР) в некотором смысле сходна с методом ЯМР, но основана на переориентации неспаренных электронов в молекуле. Помимо дифракции рентгеновских лучей используется дифракция электронов и нейтронов (электронография и нейтронография). Современные влектронные микроскопы позволяют увидеть> отдельные атомы. Каждый год появляются новые методы или модификации известных методов исследования структуры химических соединений. Наконец, в последние годы все шире применяются теоретические расчеты молекул методами квантовой химии. — Прим. перев. [c.27]

    Понятие структуры в химии ирименяется к таким системам, как атом, молекула, молекулярныГ комплекс и макротело. Однако основным структурным объектом химии является все же молекула, рассматриваемая в са.мом широком смысле этого слова как единая квантово-механическая система, в том числе, следовательно, и любая гигантская молекула, например монокристалл. Структура макротел становится в связи с этим своего рода производным объектом от структуры молекулы. Что же касается структуры атома, то таковая скорее (. тносится к ( mi.ui4( ki m объекта.м или, во всяком случае, занимает в химии иодчиненное положение ио отношению к структуре молекул. Поэтому то, что обычно называют структурной химией, является в сущности учением о структуре молекул более того, преимущественно учением о структуре органических молекул, ибо структурная неорганическая химия, появившаяся относительно недавно, представлена совери1енно особым разделом науки химией тве .)дого тела. [c.77]

    Правда, этот шаг назад ие оказал существенного влияния на судьбы структурной химии. Идеи о различной сродствоемкости , или энергоемкости, связей одержали верх. Уже с конца 1920-х годов появились такие электронные теории, которые служили преддверием квантовой химии и которые гакладьшали в понятие структуры молекулы и электронное содержание, и в то же время энергетическую неэквивалентность связей. Это были теории электронных смещений — мезомерии, электронной таутомерии, резонанса. [c.90]

    Разработка структурных теорий твердого тела. Проблемой но мер 1 структурной химии применительно к неорганическим соединениям является разработка структурных теорий твердого тела. Эти теории уже сейчас начинают создаваться на принципиально иной основе по сравнению со структурными теориями органических соединений. Последние базируются на представлениях о молекулах как замкнутых системах с сильными локализованными межатомными связями, на представлениях о взаимном влиянии атомов, которое изменяет в некоторых — в общем незначительных — пределах энергию попарных межатомных связей. Даже квантово-механические теории строения органических молекул с их основным понятием неразличимости обобщенных электронов приходят к необходимости устанавливать ква1ггово-меха нические аналоги классическим поня- [c.98]

    Рассмотренные типы структурной нежесгкости не исчерпывают все многообразие этих процессов, хотя и представляют наиболее важные их типы, к которым можно свести большинство превращений стереохимически и электронно нежестких молекул. С развитием техники экспериментальных исследований низкобарьерных перегруппировок и методов квантовой химии, надежность предсказаний которых обеспечивается прогрессом ЭВМ, становится ясным, что структурная нежесткость — одно из самых общих свойств молекул различных классов. [c.489]

    Это определяет, с одной стороны, фундаментальную теоретическую разработанность и значительную математизированность многих ведущих разделов коллоидной химии с широким применением методов химической термодинамики и статистики, термодинамики необратимых процессов, электродинамики, квантовой теории, теорий газового и конденсированного состояния вещества, структурной органической химии, статистики макромолекулярных цепей и т. д. Энергичное развитие в последние годы получили методы молекулярной динамики — численного эксперимента динамического типа с использованием быстродействующих ЭВМ. [c.9]

    На языке теории графов удобно изложить ряд пеэмпирпческпх и нолуэмпирических методов квантовой химии. Энергетические п зарядовые параметры молекул представляются как различные структурные характеристики молекулярных графов. [c.4]

    Химики используют в своих рассуждениях мысленные образы, структурные формулы (СФ), структуры Кекуле, диаграммы ORTEP. Однако в меньшей мере используется основная математическая структура этих конструкций. Нашей целью будет разработка алгебраических и топологических характеристик такой структуры первоначально для квантовой химии (молекулы, стадии молекулярных реакций), затем в известной степени для химической кинетики и динамики (нахождение возможных путей, механизмов, определение их стационарных состояний, устойчивости, колебаний). Для квантовой химии, т. е. микрохимии , будут разработаны правила с целью получения обычным путем основных электронных характеристик молекул [система уровней молекулярных орбиталей (МО), реакционная способность, устойчивость к искажениям] и в некоторых математических классах непосредственно из структурных формул или диаграмм ORTEP. На макрохимическом уровне, т. е. при нахождении всех математически возможных путей синтеза, механизмов, при разработке правил стадия/соединение, связывающих число реагентов, продуктов, интермедиатов, катализаторов, автокатализаторов с числом элементарных реакционных стадий в химической смеси и затем с динамическими неустойчивостями, будут использоваться представления иного типа — реакционные схемы, являющиеся графами с двумя типами линий и двумя типами вершин [I]. [c.73]

    He roтpя иа развитие расчетных методов квантовой химии, обеспечивающих получение количеств, данных об электронном и пространств, строении молекул, Р. т. сохраняет свое. чначение как удобная и наглядная система структурных представлений. См. также Мезомерии теория. [c.503]

    Конформационные эффекты. К, а, использует идеи, понятия и принципы двух фуидам. теорий, имеющих дело со строением молекул, а именно классич. структурной теории и квантовой химии. [c.459]

    Классич. теория хим. строения и первонач. электронные представления оказались не в состоянии удовлетворительно описать на языке структурных ф-л строение мн. соед., напр, ароматических. Совр. теория связи в орг. соед. основана гл. обр. на понятии орбиталей и использует молекулярных орбиталей методы. Интенсивно развиваются квантовохим. методы, объективность к-рых определяется тем, что в их основе лежит аппарат квантовой механики, единственно пригодный для изучения явлений микромира. Методы мол. орбиталей в О. х. развивались от тостого метода Хюккеля к валентных связей методу, ЛКЛО-приближению и др. Широко используются представления о гибридизации атомных орбиталей. Этап проникновения орбитальных концепций в О.х. открыла резонанса теория Л. Полинга (1931-33) и далее работы К. Фукуи, Вудворда и Р. Хофмана о роли граничных орбиталей в определении направления хим. р-щга. Теория резонанса до сих пор широко используется в О. X, как метод описания строения одной молекулы набором канонич. структур с одинаковым положением ядер, но с разньтм распределением электронов. [c.398]

    Представление о молекулах как о геометрических фигурах является в химии одним из шавнейших и находит свое отражение не только в привычных структурных формулах, но и лежит в основе всей стереохимии, молекулярно-динамического моделирования, биохимии итд Однако только этого недостаточно Хорошо известно, какую роль в химии при прогнозе тех или иных химических реакций имеют так называемые заряды на атомах Возникает, таким образом, проблема дать достаточно четкое определение этого понятия Проще всего это сделать, если опереться на факт существования внешнего электростатического поля, которое создает вокруг себя любая молекула. В этом смысле нет никакой разницы между взглядами классической физики и квантовой как классическая, так и квантовая устойчивая электрически нейтральная система, состоящая из частиц с зарядами разного знака и по разному распределенными в пространстве молекулы, должна, в зависимости от своей геометрии и распределения заряда, создавать электрическое поле Это поле всегда может быть представлено в виде так называемого муяьтипольного разло-женйя, т.е как суперпозиция дипольной составляющей, квадрупольной и тд Дипольная составляющая отсутствует в молекулах, имеющих центр симметрии Так как центр симметрии не так уж часто встречается в слож- [c.163]


Смотреть страницы где упоминается термин Химия квантовая структурная: [c.167]    [c.141]    [c.19]    [c.99]    [c.4]    [c.4]    [c.92]    [c.8]    [c.5]    [c.120]    [c.47]    [c.43]    [c.460]    [c.326]   
История стереохимии органических соединений (1966) -- [ c.61 ]




ПОИСК





Смотрите так же термины и статьи:

Химия квантовая



© 2025 chem21.info Реклама на сайте