Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции изменения степени окисления центрального иона в комплексе

    Реакции изменения степени окисления центрального иона в комплексе [c.69]

    Электродные реакции комплексов металлов, включающие изменение степени окисления центрального иона металла, можно разделить на две группы  [c.26]

    В предыдущих главах основное внимание уделялось таким реакциям, в которых изменения в координационной сфере можно было рассматривать совершенно независимо от изменения степени окисления, и наоборот. В ряде случаев это различие между такими процессами представляется достаточно условным, как, например, в случае окислительно-восстановительной реакции во внутренней сфере комплекса, происходящей с образованием и разрушением мостиковых связей путем замены лигандов. Однако даже и в этом случае обычно можно рассматривать замещение и окисление-восстановление как разные этапы многостадийного процесса. В этой главе мы увидим, как можно применить принципы, установленные для простых реакций, к системам, в которых эти два этапа очень тесно связаны между собой. Основным фактором, определяющим те изменения в координационной сфере, которые вызываются окислением-восстановлением, является соотношение между собой электронной конфигурацией в окисленном и восстановленном состоянии центрального атома и координационным числом. Если рассмотреть эту проблему в общем виде, то можно установить, что в случае ионных соединений элементов 0-блока (один из предельных случаев) координационные числа определяются взаимодействием таких факторов, как заряд, электроотрицательность и размер лиганда, способ координации лигандов около центрального атома и другие стерические эффекты. В то время как в случае ковалентных соединений (другой предельный случай) координационное число в значительной степени зависит от характера атомных орбиталей центрального атома, которые могут быть использованы для образования связей металл— лиганд, в ковалентных комплексах действует правило 18 электронов при этом предполагается, что несвязанные [c.220]


    Одним из наиболее очевидных требований для использования реагента в аналитических методах является чувствительность реакции. Для выполнения этого требования в случае реакций, протекающих с изменением цвета, необходимо, чтобы в молекуле образующегося комплекса или в исходном реагенте содержались хромофорные группы, которые характеризуются переходами с молярными коэффициентами погашения, лежащими в пределах 10 — 10 л/(моль-см). Такие хромофорные группы имеются у -я- и я-хромофоров. Применение комплексов с d-я-хромофорами ограничивается переходными элементами, в частности теми из них, которые могут существовать в двух степенях окисления, отличающихся друг от друга на один электрон. Для элементов первого большого периода можно привести следующие типичные примеры комплексы кобальта(П1) с ПАН, а также комплексы железа (II) и меди (Г) с 2,2 -дипиридилом и 1,10-фенантролином и их производными. При исследовании комплексов железа (И) с этими реагентами было установлено, что введение заместителей в положения 6 и 6 молекулы дипиридила и в положения 2 и 9 молекулы фенантролина создает стерические препятствия при образовании комплекса. Вследствие этого расстояние между центральным ионом и лигандом увеличивается и соответствующая полоса переноса заряда исчезает. Введение заместителей в иные положения сказывается только на растворимости образующихся комплексов. [c.83]

    Сам ион металла оказывает доминирующее влияние на реакционную способность комплекса в целом. Для данного металла в данной степени окисления можно в первом приближении предсказать расположение лигандов. Так, большинство комплексов с конфигурацией (Р, и d , например таких металлов, как Сг(1П), Fe(III), Fe(II), o(III), Rh(III) и Ir(III), имеют октаэдрическое строение. Комплексы Pd(II), Pt(II), Rh(I) и Ir(I), т. е. комплексы с конфигурацией центрального атома d , обычно имеют квадратную координацию, хотя есть примеры соединений с координационным числом пять. Для Ni(II) известны комплексы с координационным числом шесть. Комплексы с конфигурацией обычно тетраэдрические такая структура типична для изоэлектронных комплексов ряда Ni(0), Со(—I) и Fe(—II). Комплексы с конфигурацией dP и описанными выше структурами характеризуются более высокой стабильностью. И естественно, такое строение имеют большинство известных комплексов. Большой интерес, особенно для процессов окисления — восстановления, представляют и менее стабильные системы, которые могут приобретать устойчивую конфигурацию за счет лигандов или других комплексов. Несомненно, изменение валентности переходного металла играет решающую роль во многих этих реакциях. [c.10]


    В координационной теории реакцию между реагирук>щими веществами (водородом и непредельной молекулой при гидрогенизации) можно рассматривать как взаимодействие лигандов, присоединенных к одному и тому же иону или ато му катализатора. Через центральный атом происходит обмен электронами с изменением его степени окисления (комплексы с переносом заряда). [c.172]

    Komm. Как влияет на окислительно-восстановительные свойства кобальта(П) замена молекул воды во внутренней сфере комплекса на другие лиганды Укажите функции нитрит-иона в П5. Почему не происходит окисления никеля(П) при введении пероксида водорода в реакционную смесь П2 (аналогично П1) Сравните устойчивость ацидокомплексов железа(П1) а) с тиоцианат-ионом и фторид-ионом (Пц) б) с ортофосфат-, гидроортофосфат- и ди-гидроортофосфат-ионами (П12)- Как влияет на цвет комплекса кобальта(П) а) замещение молекул воды во внутренней сфере на хлорид-ионы б) изменение КЧ центрального атома и превращение октаэдрического комплекса в тетраэдрический (Пе—Пд) Укажите координационное число комплексообразователя и дентатность лигандов для всех образующихся комплексов. К какому типу комплексов относятся продукты реакций в Пю, П13 и П Как меняется устойчивость комплексных соединений элементов семейства железа а) при переходе от степени окисления +П к -ЬП1 б) при замещении монодентатного лиганда на полидентатный (П13, Пи) Предложите способы обнаружения и разделения катионов железа(П), железа(П1), кобальта(П) и никеля(П) при их совместном присутствии в растворе. Составьте алгоритм опыта. [c.225]


Смотреть страницы где упоминается термин Реакции изменения степени окисления центрального иона в комплексе: [c.126]    [c.254]    [c.214]   
Смотреть главы в:

Синтез макроциклических соединений -> Реакции изменения степени окисления центрального иона в комплексе




ПОИСК





Смотрите так же термины и статьи:

Ионы центральные

Окисления степень

Реакции окисления

Центральный комплекс



© 2025 chem21.info Реклама на сайте