Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Приложения амперометрического метода

    Приложения амперометрического метода [c.140]

    Излагаемый в книге практический материал составлен в основном применительно к запросам неорганического анализа. Однако за последнее время амперометрическое титрование широко применяется и в органической химии. Не будучи специалистом в области органической химии, автор ограничился приведением подробного списка работ, посвященных применению амперометрического метода в этой области (Приложение 3). [c.8]


    Амперометрия относится к методам электрохимического анализа, в которых приложенное к ячейке напряжение поддерживается постоянным, а протекающий через ячейку ток является функцией концентрации, времени и ряда других факторов. Выше уже обсуждался метод хроноамперометрии, основанный на измерении временных зависимостей. Однако амперометрические измерения не связаны с получением таких зависимостей. В этом методе измеряется фарадеевский ток, пропорциональный концентрации определяемого вещества. [c.496]

    Амперометрическое титрование. Метод заключается в измерении силы тока в ячейке с одним или двумя поляризуемыми электродами в зависимости от, количества добавленного титранта. Величина приложенного напряжения должна находиться в области предельного тока титруемого вещества или титранта. Точка эквивалентности определяется по резкому возрастанию или уменьшению силы тока. [c.348]

    Непосредственную связь между амперометрическим титрованием и полярографическим методом удобнее всего показать графически. Представим себе, что в ряде растворов соли цинка определена концентрация цинка полярографическим методом соответствующие полярограммы представлены на рис. , а. Полярографические кривые выражают зависимость между силой тока и приложенным напряжением как видно из рис. , а, сила тока сначала постепенно возрастает при увеличении приложенного напряжения, затем возрастание силы тока прекращается — кривая переходит в горизонтальный участок (параллельный оси абсцисс). Это означает, что дальнейшее изменение потенциала электрода до некоторого значения уже не может вызвать увеличения силы тока. В таком случае принято называть наблюдаемый ток предельным или, в определенных условиях, — диффузионным, если величина его определяется только скоростью доставки ионов к электроду путем диффузии. Высота площадки диффузионного тока (волны) зависит от содержания цинка в исследуемом растворе кривая 1 соответствует наибольшему содержанию цинка (3,2 мг), кривая 6 — наименьшему (0,2 мг). Исходя из этих полярограмм, можно построить другой график, на оси ординат которого по-прежнему откладывают силу тока, а на оси абсцисс концентрацию цинка если перенести высоту волны, обозначенную на рис. 1, а цифрами/, 2,5, [c.13]

    В приложении 1 к настоящему руководству дается таблица потенциалов платинового электрода, которыми следует пользоваться при различных случаях титрования. В таблице приведены потенциалы платинового электрода не только для тех веществ, которые находят или могут найти практическое применение, но и для таких, которые не применяются пока ни в качестве титруемых, ни в качестве титрующих растворов, но присутствие которых может оказать влияние на ход амперометрического титрования других веществ. Примером может служить реакция электродного окисления марганца, которая сама по себе не используется при амперометрическом титровании, но может мешать при анодном ферроцианидном методе определения цинка или при других анодных процессах. [c.69]


    Титрование до мертвой точки . Существует упрощенный метод титрования, заключающийся в приложении небольшой разности потенциалов к двум идентичным инертным электродам. Первоначально этот метод рассматривался только как видоизменение потенциометрического титрования и считался применимым только для титрования иода. Однако последними работами было показано, что этот метод близко связан с другими методами амперометрического титрования, хотя и происходит без участия диффузионных токов [24]. [c.182]

    В амперометрии измеряется диффузионный ток при соответствующем приложенном потенциале и уравнение (8-1) непосредственно, применяется для определения концентрации какой-либо формы. С другой стороны, в полярографии ток измеряется как ( )ункция приложенного потенциала и определяется для полярографической полуволны. Пуш [57] определил константу диссоциации карбоновой кислоты амперометрическим методом в 1916 г. Однако химики много лет не признавали ам-перометрию, и этим методом было определено лишь несколько констант устойчивости. Полярография была разработана приблизительно в 1920 г. Гейровским, который вскоре оценил ее применимость для изучения ионного равновесия [18]. Тем не менее вплоть до 1950 г. не делалось никаких попыток строгого полярографического определения ступенчатых констант устойчивости [8, 60]. Метод можно применять непосредственно только к строго ограниченному ряду ионов металлов, но об- [c.212]

    СКОРО анализа. Большой раздел посвящен описанию практических методик полярсгра-фического определения свыше 70 элементов в различных материалах. Описаны полярография органических соединений, методы амперометрического титрования, приведена краткая характеристика новых направлений полярографии. Приложение содержи обширные таблицы потенциалов полуволн. [c.489]

    Амперометрическое титрование с одним поляризуемым электродом. В этом методе, который в литературе называют также титрованием по предельному току, полярографическим и полярометрическим титрованием, замеряют силу тока, текущего между одним поляризуемым и одним неполяризуемым электродами в зависимости от количества добавленного титранта. Выбирают величину приложенного напряжения, которое должно находиться в области предельного тока титруемого вещества (Тс1) пли (и) титранта (Тг) (разд. 4.1.5). В зависимости от вольтамперной характеристики веществ, участвующих в реакции при титровании Тс1 + Тг-К, получаются различные кривые титрования. Эти зависимости приведены на рис. 4.22. Аналогичные зависимости получаются и для анодных вольтамперных кривых. Известно, что часто применяющиеся формулировки, например титруемое вещество V полярографически активно , титрант полярографически неактивен весьма относительны, поскольку полярографическое поведение веществ зависит от прилагаемого напряжения (титрант при полярографически неактивен при — полярографическ1 активен). Представленные кривые титрования идеализированы. В практике наблюдается некоторое искривление кривых титрования вблизи точки эквивален1нсс7и, так как концентра- ция,титруемого вещества и, следовательно, величина тока при добавлении избытка титранта еще продолжают уменьшаться (закон действующих масс). Экспериментальная кривая титрования переходит в идеализированную, если константа равновесия протекающей химической реакции приближается к бесконечности. Практически точкой эквивалентности является точка пересечения продолженных прямолинейных участков кривой титрования. Возможны случаи, когда на кривой титрования вообще нет прямолинейных ветвей причиной этого (при достаточной величине константы равновесия химической реакции) является чрезмерно большой объем добавляемого титранта (Ум) по сравнению с объемом пробы (Ур). При этом возникает ошибка разбавления, и замеряемые значения тока необходимо корректирсвать по следующей формуле  [c.137]

    Избирательность амперометрических измерений в гфинципе невелика. Она обеспечивается лишь значением потенциала, приложенного к индикаторному электроду, что позволяет ему не реагировать на содержащиеся в растворе примеси и электрохимически активные вещества, которые восстанавливаются (окисляются) при более отрицательных (положительных) потенциалах, чем потенциал определяемого компонента. Вещества, которые легче восстанавливаются (окисляются), чем определяемый компонент, мешают его определению. Поэтому в электрохимическом анализе в основном применяется амперометрическое титрование. В этом случае ток, протекающий через ячейку, является функцией количества (объема) титранта. Метод амперометрического титрования более точен, чем амперометрия, в меньшей мере зависит от характеристик электрода, природы фонового электролита и растворителя, не требует 496 [c.496]

    Титрование солью Мора при потенциале +1,0 s было предложено И. П. Алимариным и Т. К. Кузнецовым и вслед за ними Г. А. Бутенко и Г. Е. Беклешовой для определения ванадия, хрома и марганца в легированных сталях. Одновременно аналогичный метод предложен за рубежом для определения ванадия и хрома также в сталях и нефтяных продуктах. Метод апробирован лабораторией Днепропетровского металлургического завода Затем вышла работа И. П. Алимарина и Б. И. Фрид по приложению этого же метода к микроопределению ванадия и хрома (а также железа) в минералах, рудах и горных породах. На этом же принципе основан предложенный Е. Г. Кондрахиной и др. амперометрический вариант определения железа (II) по А. В. Шейну [c.180]


    Полярометрическое (с капельным ртутным электродом) или амперометрическое (с твердыми электродами) титрование сравнимо по точности ( 0,2—0,3%) с потенциометрическим титрованием. В титровании такого типа неактивное соединение титруют полярографически активным титрантом, или наоборот титрование возможно также, если активны оба агента. В ходе титрования при постоянном потенциале измеряется ток, который соответствует предельному току одного компонента, и наносится на график в зависимости от объема титранта. Если при приложенном потенциале активны оба вещества, получается V-образная зависимость если активно лишь одно вещество, получается L-образная кривая (или обратная ей). Точкам эквивалентности соответствуют точки излома этих кривых. Однако применение этого метода в органическом анализе довольно ограничено, хотя разработаны практические методики титрования неактивных морфина [122] и цефэлина [123] диазотированной сульфаниловой кислотой [65], а производных акридина, являющихся лекарственными средствами, — бихроматом калия [15]. В других случаях полярометрическое титрование гетероциклов основано на реакциях осаждения (например, алкалоидов — гетерополикислотами [307]) и не является специфичным. По этой причине не следует переоценивать роль полярометрического титрования в анализе гетероциклов. [c.261]

    Непосредственную связь между амперометрическим титрованием и полярографическим методом удобнее всего показать графически. Представим себе, что в ряде растворов соли цинка определена концентрация цинка полярографическим методом соответствующие полярограммы представлены на рис. 1,а. Полярографиче-скпе кривые выражают зависимость между силой тока и приложенным напряжением как видно из рис. 1,а, сила тока сначала постепенно возрастает при увеличении приложенного напряжения, затем кривая переходит в горизонтальный участок (параллельный оси абсцисс). Это означает, что дальнейшее изменение потенциала электрода уже не может вызвать увеличения силы тока. В таком случае принято называть наблюдаемый ток предельным или, в определенных условиях, — диффузионным, если лимитирующей стадией электродного процесса является диффузия ионов к электроду.  [c.9]

    Т. А. Крюкова, С. И. Синякова, Т. В. Арефьева. Полярографический анализ Госхимиздат, 1959 (772 стр.). Книга содержит теоретические основы полярографиче ского анализа. Большой раздел посвящен описанию практических методик полярогра фического определения свыше 70 элементов в различных материалах. Описаны поля рография органических соединений, методы амперометрического титрования, приве дена краткая характеристика новых направлений полярографии. Приложение содер жит обширные таблицы потенциалов полуволн. [c.475]

    Для количественного определения антипирина использовался также метод амперометрического титрования раствором хлорида иода без приложения внешней электродвижущей силы. В процессе титрования I I вступает в реакцию с антипирином с образованием 4-иодантипирина  [c.145]

    Описан также метод амперометрического титрования аскорбиновой кислоты раствором иода на фоне 0,05 М раствора Нг504 в присутствии комплексона и муравьиной кислоты как стабилизатора с использованием платинового микроэлектрода и Ag/AgI-элeктpoдa без приложения внешней электродвижущей силы. [c.197]


Смотреть страницы где упоминается термин Приложения амперометрического метода: [c.170]    [c.91]    [c.137]    [c.94]    [c.95]    [c.99]   
Смотреть главы в:

Электрохимические методы анализа -> Приложения амперометрического метода




ПОИСК





Смотрите так же термины и статьи:

Приложения ЯКР-метода



© 2025 chem21.info Реклама на сайте