Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Движение газа посредством конвекции

    Движение газа посредством конвекции [c.21]

    Р п с. 5. Движение газа посредством конвекции (Гг > ГО- [c.21]

    Внешний тепло- и массообмен капель в потоке газа. Теплообмен при движении капель в потоке высокотемпературного газа осуществляется посредством конвекции и излучения. Энер-г1ш излучения от газа к каплям может возникать в результате [c.68]

    Кроме того, конструкция печи влияет на теплопередачу посредством своих элементов, предназначенных для сжигания топлива, превращения в тепло электроэнергии и перемещения газов. От этих конструктивных элементов зависят интенсивность и характер тепловыделения, скорость и направление движения газов, т.е. факторы, которыми определяется температура газовой среды ГД1) (функция времени — продолжительности передачи тепла) и суммарный (включающий излучение и конвекцию) коэффициент теплоотдачи а ., или а . (формула (12.8) и (12.9)). [c.627]


    Поток тепловой энергии может проникать внутрь выделенного слоя и, наоборот, покидать его посредством молекулярного механизма, описываемого законом теплопроводности Фурье. Перенос тепловой энергии через слой может осуществляться также и вследствие движения сплошной среды жидкости или газа как целого. В последнем случае принято говорить, что тепловая энергия переносится посредством конвекции. Поступление энергии в выделенный объем движущейся среды и отвод из него энергии в результате конвективного переноса называют соответственно увеличением и уменьшением энтальпии в рассматриваемом объеме. Наконец, тепловая энергия может генерироваться внутри слоя при протекании различных необратимых диссипативных процессов например, за счет выделения джоулева тепла в проводниках электрического тока, при замедлении нейтронов и осколков ядер, освобождаемых в процессе деления ядерного горючего, за счет диссипации механической энергии (вязкая диссипация), а также при превращении химической энергии в тепловую. [c.243]

    Передача тепла конвекцией происходит только в жидкостях и газах путем перемещения их частиц. Перемещение частиц обусловлено движением всей массы жидкости или газа (вынужденная или принудительная конвекция), либо разностью плотностей жидкости в разных точках объема, вызываемой неравномерным распределением температуры в массе жидкости или газа (свободная, или естественная, конвекция). Конвекция всегда сопровождается передачей тепла посредством теплопроводности. [c.364]

    Теплопроводность связана с передачей тепла посредством движения и столкновения атомов и молекул, из которых состоит вещество. Она аналогична процессу диффузии, при котором с помощью подобного же механизма происходит передача материала. Конвекция является переносом тепла посредством движения больших агрегатов молекул, т. е., в сущности, подобна процессу смешения. Очевидно, что теплопередача путем конвекции может происходить только в жидкостях и газах, тогда как теплопроводность является основным видом теплопередачи в твердых телах. В жидкостях и газах, наряду с конвекцией, наблюдается также и теплопроводность, однако первая является значительно более быстрым процессом и обычно полностью маскирует второй процесс. И теплопроводность и конвекция требуют материальной среды и не могут происходить в полном вакууме. Этим подчеркивается основное различие между этими двумя процессами и процессом излучения, который лучше всего происходит в пустоте. Точный процесс, которым осуществляется передача энергии излучением через пустое пространство, еще не установлен, но для нашей цели будет удобно считать его происходящим посредством волнового движения в чисто гипотетической среде (эфире). Считается, что внутренняя энергия вещества передается волновому движению эфира это движение распространяется во всех направлениях, и когда волна сталкивается с веществом, энергия может передаваться, отражаться или поглощаться. При поглощении она может увеличить внутреннюю энергию тела тремя способами 1) вызвав химическую реакцию, [c.418]


    Распространение тепла внутри тела возможно двумя способами теплопроводностью и конвекцией. При первом способе тепло распространяется благодаря столкновениям молекул, причем молекулы более нагретой части тела, имеющие в среднем большую кинетическую энергию, передают часть ее соседним молекулам. Таким образом, тепло может распространяться в теле и при отсутствии явного движения его частей, например в твердом теле. В жидкостях и газах наряду с теплопроводностью обычно происходит также распространение тепла конвекцией, т. е. путем непосредственного переноса тепла более нагретыми массами жидкости, занимающими при движении места менее нагретых масс. В газах возможно также распространение тепла от одной части газа к другой посредством излучения. [c.19]

    Передача тепла конвекцией от поверхности твердого тела к жидкости (газу) или обратно, а также конвективное распространение тепла в жидких или газообразных веществах происходит в результате перемещения молярных частиц, состоящих из большого числа молекул этих веществ. Перемещение таких частиц обусловлено либо движением всей массы жидкости (газа) под влиянием внешнего воздействия (принудительная конвекция), либо является следствием разности плотностей вещества в различных точках пространства, вызываемой неравномерным распределением температур в массе вещества (естественная конвекция). Конвекция всегда сопровождается передачей тепла посредством теплопроводности. [c.271]

    По способу подвода теплоты к регенерированному гликолю, конструктивным особенностям и времени пребывания его в горячей зоне (эти характеристики взаимосвязаны) все установки регенерации можно разделить на две основные группы паровая, огневая жаротрубная, с тепловыми трубками и с промежуточным теплоносителем регенерации. В этой группе установок теплота в регенерируемый гликоль подводится посредством теплообмена с внешним теплоносителем (дымовые газы, водяной пар, промежуточный теплоноситель), причем гликоль находится в кубе колонны регенерации практически в статическом состоянии (движение жидкости относительно теплопередающей поверхности осуществляется в основном за счет естественной конвекции)  [c.58]

    Движение газов в печных каналах и полостях, вообще говоря, может идти несмешивающимися струями по траекториям, подобным форме канала такое движение называется ламинарным. Это соответствует значению критерия Рейнольдса Ке 2 300. Оно редко наблюдается в печных газоходах. При ламинарном движении перенос массы осуществляется путем молекулярной диффузии, а передача тепла — путем теплопроводности тепло- и массообмен протекают слабо. При Ке>2 300 инерционные силы в потоке превалируют над силами трения настолько, что в потоке образуется множество возбужденных пересекающихся струек масса переносится главным образом путем вихревой диффузии, а теплота — посредством конвекции. Скорость в каждой точке изменяется по величине и направлению. Такое движение называется турбулентным. При постоянном расходе газа через какое-либо сечение средняя скорость турбулентного движения в данной точке остается постоянной по величине и направлена в сторону движения. На рис. 8-1 показано значение вектора мгновенной скорости т в данной точке, являющейся геометрической суммой средней скорости ш (постоянной по величине и направлению) и пульсационной скорости гд, изменяющейся по величине и направлению  [c.93]

    Важную роль для процесса сжигания (газификации) топлива играет направление взаимного движения твердой и газоюй фаз. Известны две схемы организации движения потоков газа и топлива прямоточная и противоточная. В прямоточной схеме потоков газа и топлива тепловая подготовка реагентов происходит менее интенсивно, без участия горячих газов и в основном посредством передачи теплоты из зоны горения теплопроюдностью и излучением. В противогочной схеме достигается более надежное воспламенение топлива, поскольку передача теплоты для его нагрева осуществляется конвекцией от горячих газов и теплопроводностью от раскаленных поверхностей. [c.49]

    Сгорание топлива сопровождается выделением и переносом тепла, а также потерями, точнее, рассеянием тепла в окружающую сроду. Иеренос тепла происходит конвекцией, т. е. непосредственно двин у-щимся газовым потоком, а также потоком твердых частиц. Кромо того, внутри потоков газа и частиц происходит перенос тепла посредством теплопроводности и излучения. Теплопроводность в средах газа и частиц, также как и молекулярная диффузия, пмеет место независимо от их движения. Пото1 и массы и тепла за счет диффузии и теплопроводности возникают совместно при наличии градиентов — температуры и концентраций (точнее, химического потенциала х) — и определяются взаимными линейными функциями и у7 (см. гл. V и VI). Но практически переносом тепла за счет градиента концентраций, а также переносом массы за счет градиента температур (термодиффузией) можно пренебречь. [c.513]



Смотреть страницы где упоминается термин Движение газа посредством конвекции: [c.36]   
Смотреть главы в:

Химические транспортные реакции -> Движение газа посредством конвекции

Химические транспортные реакции -> Движение газа посредством конвекции




ПОИСК





Смотрите так же термины и статьи:

Конвекция



© 2025 chem21.info Реклама на сайте