Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурные факторы и функция распределения электронной плотности

    Можно показать, что каждый коэффициент ряда Фурье, называемый структурной амплитудой, равен величине соответствующего структурного фактора Р, деленной на объем V элементарной ячейки. Так как в общем случае структурный фактор— мнимая величина, структурная амплитуда является также мнимой величиной и как всякое мнимое число она характеризуется модулем и фазой. Таким образом, трехмерное распределение электронной плотности р в кристалле может быть представлено в виде тройных рядов Фурье, коэффициенты которых выражаются через структурный фактор, деленный на объем элементарной ячейки, т. е. р = где д — функция выражения, заключенного в скобки. Если все структурные факторы Р известны, можно вычислить р и, следовательно, определить структуру кристалла. Однако по почернению пленки удается судить лишь о величине интенсивности, т. е. об В общем случае Р равно произведению некоторого мнимого числа и его ком- [c.235]


    Структурные факторы и функция распределения электронной плотности [c.242]

    Измеренные интенсивности дифракционных лучей еще не содержат всей необходимой ин юрмации для решения структуры. Модуль структурной амплитуды Р получить из эксперимента нетрудно, однако соответствующая ему фаза остается неизвестной. Как будет ясно из дальнейшего, для центросимметричных структур неизвестен знак (+ или —) структурного фактора. Когда станут известны обе эти величины для каждого отражения, тогда можно будет получить функцию распределения электронной плотности в элементарной ячейке с помощью синтеза Фурье. [c.149]

    Усовершенствование техники рентгеноструктурных исследований привело к значительному повышению точности измерения интенсивности дифракционных лучей. Одновременно разработка методов эффективного учета различных побочных факторов, влияющих на интенсивность, позволила существенно понизить потери в точности при переходе от интенсивности к структурным амплитудам, а следовательно, адекватно снизить уровень погрешности в определении электронной"" плотности, координат атомов и констант колебаний атомов. Это дает возможность направить рентгеноструктурный анализ на решение ряда новых физико-химических задач, лежащих за пределами статической атомной структуры кристалла. Это прежде всего следующие задачи а) анализ тепловых колебаний атомов в кристаллах б) анализ деталей распределения электронной плотности по атомам и между атомами в кристаллах в) использование структурных данных для оценки параметров, входящих в волновые функции и орбитальные энергии молекулярных систем. [c.180]

    В ОДНИХ местах и меньшей в других. Как и любую периодическую функцию, это распределение можно представить в виде суммы синусов и косинусов (ряд Фурье), и коэффициенты при членах этого ряда оказываются равными отдельным структурным факторам, поделенным на объем элементарной ячейки. Используя предварительный набор структурных факторов, можно вычислить, таким образом, электронную плотность р(х, у, г) в зависимости от положения в кристалле. Эти вычисления довольно трудоемки, и часто предпочитают, особенно на первых стадиях структурного исследования, рассчитывать двумерные синтезы Фурье, дающие р(х, у) и т. д. Величины р(х, у) представляются в виде контурных карт, изображающих проекции электронной плотности на выбранную плоскость кристалла. Если какие-либо молекулы расположены более или менее параллельно рассматриваемой плоскости, то из проекции довольно точно можно определить положение атомов таких молекул. Положения атомов, выведенные таким путем из нескольких проекций электронной плотности, могут использоваться теперь для получения лучшего соответствия с наблюдаемыми интенсивностями, и затем строятся новые синтезы Фурье. Несколько повторений такой операции приводят, наконец, к наилучшему возможному набору параметров для исследуемой структуры. Карта электронной плотности приведена в приложении на рис. 17. [c.315]


    Уравнение 11.2-8 можно рассматривать как некое суммарное представление так называемой фазовой проблемы рентгеноструктурного анализа, а именно того факта, что фазовые углы фш и, следовательно, структурные факторы Fhki недьзя измерить напрямую. Если бы это было возможным, то опредеде-ние кристаллических структур представляло бы собой тривиальную процедуру, требующую лишь суммирования Фурье по выбранным узлам координатной сетки (xyz) в элементарной ячейке. Как обсуждалось вьпие, ведичины факторов атомного рассеяния / зависят от среднего распределения электронной плотности в кристаллической решетке для вовлеченных атомов. Функция электронной плотности p(xyz) в кристалле, следовательно, определяется обратным фурье-преобразованием (ур. 11.2-9) структурного фактора [c.400]

    Метод наименьших квадратов и метод Карля—Хауптмана, так же как и алгебраический метод Аврами, базируются на представлении о структуре как совокупности дискретных атомов. Однако наибольшие успехи структурных исследований связаны с трактовкой кристаллического пространства как пространства с непрерывно распределенной электронной плотностью. На этом и основан предложенный в 1935 г. Паттерсоном метод межатомной функци и—метод, ставший в дальнейшем основным приемом решения громадного большинства структурных задач. Расчет межатомной функции Р туи) по значениям структурных факторов связан с представлением ее в виде ряда Фурье и, следовательно, производится при помощи стандартных вычислительных схем и приспособлений. В результате синтеза / -ряда мы получаем данные о совокупности межатомных векторов. Анализ совокупности межатомных векторов в принципе позволяет найти и самое атомную конфигурацию. [c.419]


Смотреть страницы где упоминается термин Структурные факторы и функция распределения электронной плотности: [c.241]    [c.138]    [c.29]    [c.138]    [c.49]    [c.226]   
Смотреть главы в:

ЭВМ помогает химии -> Структурные факторы и функция распределения электронной плотности




ПОИСК





Смотрите так же термины и статьи:

Плотность структурная

Плотность электронов

Фактор фактор электрона

Функция распределения

Функция распределения плотности

Электрон функция

Электронная плотность

Электронная плотность Плотность электрон

Электронная плотность Электроны

Электронная плотность функции распределения

Электронная распределение

Электронов распределение



© 2024 chem21.info Реклама на сайте