Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фактор фактор электрона

    Связь структурного фактора с электронными свойствами металлов. Одним из физических свойств металлов, непосредственно связанных с ближним порядком и энергией взаимодействия частиц, является электропроводность. Развитие квантовой теории твердого тела привело к выводу, что электропроводность жидких металлов можно вычислить теоретически по экспериментальным данным для структурного фактора а(5), задавая Фурье-образ потенциальной энергии взаимодействия электронов с атомами расплава. Основная идея, на которой базируются расчеты электропроводности, состоит в том, что рассеяние электронов проводимости жидкого металла описывается структурным фактором, аналогичным для рентгеновского излучения или нейтронов. Заметим, что структурный фактор рассеяния электронов проводимости ограничен значениями 5, которые для одновалентных металлов находятся слева от первого максимума а 8), а для двух (и более) валентных металлов —справа от него. В то же время, по данным рассеяния медленных нейтронов и рентгеновских лучей длиной волны X = 0,5—0,7 А, структурный фактор определяется до 5 = 15—20 А"1. Выясним, чем же обусловлено такое различие а(5). По современным представлениям, электроны проводимости металла нельзя рассматривать как свободные. Их движение в кристалле модулировано периодическим силовым полем решетки. Непрерывный энергетический спектр свободных электронов в -пространстве распадается на зоны разрешенных энергий — зоны Бриллюэна, разделенные интервалами энергий, запрещенными для электронов. На шкале энергий Е к) зоны Бриллюэна изображают графически в виде полос разрешенных значений энергии и разрывов между ними (рис. 2,13). В трехмерном/г-пространстве они имеют вид многогранников, форма которых определяется симметрией кристаллических решеток, а размеры — параметрами решетки. Для гранецентрированной кубической решетки первая зона Бриллюэна представляет собой октаэдр, а для объемно-центрированной решетки — кубический додекаэдр. [c.52]


    Фактор неспаренного электрона в газообразном атоме или ионе, для которого применима схема взаимодействия Рассела — Саундерса, выражается с помощью приведенного ранее уравнения [c.209]

    В этом разделе дается краткий обзор некоторых результатов, полученных при исследовании различных "-комплексов методом ЭПР. Более полное обсуждение читатель может найти в работах [19, 20]. Прежде чем приступить к рассмотрению результатов, следует упомянуть, что спин-орбитальное взаимодействие — главный фактор, определяющий электронную релаксацию в этих системах. При ознакомлении с этим разделом читатель может столкнуться с Такими утверждениями, как расщепление в нулевом поле вызывает быструю релаксацию или анизотропия 3-фактора ведет к небольшим временам жизни электронного спинового состояния и т.д. Все эти выражения говорят об очевидных эффектах спин-орбитального взаимодействия в молекуле. Ранее уже обсуждалась связь спин-орбитального взаимодействия с релаксационными эффектами. Комплексы ионов переходных металлов второго и третьего периодов значительно более сложны для исследования методом ЭПР, поскольку в этом случае значения констант спин-орбитального взаимодействия много больше. [c.233]

    С увеличением температуры обработки анизотропия д — фактора электронного парамагнитного резонанса заметно повышается (рис. 9-64). Это также является показателем увеличения текстуры УВ из мезофазного пека. [c.614]

Рис. 9-64. Изменение с температурой термообработки анизотропии д-фактора электронного парамагнитного резонанса УВ на основе мезофазного пека и ПАН-волокна. Рис. 9-64. Изменение с <a href="/info/984993">температурой термообработки</a> анизотропии д-<a href="/info/1388061">фактора электронного парамагнитного резонанса</a> УВ на основе <a href="/info/1711751">мезофазного пека</a> и ПАН-волокна.
    Кроме перечисленных выше трех состояний вещество может находиться в четвертом агрегатном состоянии — плазменном, которое открыто сравнительно недавно. Состояние плазмы возникает в том случае, если на вещество в газообразном состоянии действуют такие сильные ионизирующие факторы, как сверхвысокие температуры (в несколько миллионов градусов), мощные электрические разряды или электромагнитные излучения. При этом происходит разрушение молекул и атомов вещества и превращение его в смесь, состоящую из положительно заряженных ядер и электронов, движущихся с колоссальными скоростями. По этой причине плазму иногда называют электронно-ядерным газом. [c.12]


    Чисто спиновое значение -фактора для свободного электрона (5 = 72. L 0, /= /2) по формуле (111.8) получается равным о=2, а приведенное выше более точное значение 2,00232 содержит релятивистскую поправку. Для неспаренного электрона во многих свободных радикалах -фактор также близок к этому значению и может отличаться от него только во втором или даже третьем знаке после запятой, но вообще, например, у соединений переходных металлов и других парамагнитных систем значения -фактора меняются довольно в широких пределах (до нескольких единиц). [c.57]

    Конечно, значительно важнее вопроса о классификации являются причины существования таких особых классов. Возможно, как мы это увидим ниже, важнейшим и единственным определяющим фактором является электронная конфигурация атома металла. [c.241]

    Следовательно, орбитальный момент погашается. Тогда вклад в парамагнетизм вносит только спин электрона и значение -фактора почти совпадает со значением его для свободного электрона. Этот случай часто встречается для свободных радикалов (табл. 5.30). Отклонение Ag = g — go от -фактора свободного электрона пропорционально константе спин-орбитального взаимодействия (ср. табл. 5.31). [c.265]

    Ширина запрещенной зоны у полупроводников в большой степени зависит от температуры (что и является главной основой принадлежности того или иного простого вещества к классу полупроводников). Так, при температурах, близких к абсолютному нулю, ширина запрещенной зоны стремится к бесконечности. В этих условиях все электроны (в том числе и валентные) находятся на самом низком энергетическом уровне, зона проводимости пуста полупроводник приобретает свойства совершенного диэлектрика. Прн повышении температуры полупроводника (или при воздействии других возбуждающих факторов) валентные электроны, преодолевая запрещенную зону, в большей или меньшей степени заполняют зону проводимости . Таким путем создается электронный механизм переноса тока, [c.455]

    Ненасыщенный а-атом углерода. Субстраты винильного, ацетиленового [234] и арильного типов характеризуются очень низкой реакционной способностью в реакциях нуклеофильного замещения. Для таких систем реакции по механизмам SnI и Sn2 сильно замедляются или вовсе не идут. Это может быть обусловлено рядом факторов. Один из них заключается в том, что атом углерода в состоянии хр -гибридизации (и еще больше в состоянии sp-гибридизации) обладает более высокой электроотрицательностью, чем 5рЗ-гибридизованные атомы углерода, и поэтому сильнее притягивает электроны связи. Как уже было показано в т. I, разд. 8.5, кислотность связи sp- —Н выше, чем кислотность связи sp - —Н, а кислотность связи sp - —Н имеет среднее между ними значение. Это вполне объяснимо при потере протона электроны остаются у атома углерода, поэтому sp-атом С, притягивающий электроны сильнее других. [c.67]

    Необходимо, впрочем, отметить, что для решения вопросов, связанных с тепловыми колебаниями, нейтронография более перспективна, чем РСА. При рассеянии рентгеновских лучей тепловые колебания выступают как фактор, размазывающий электронную плотность атомов, и остается не до конца ясным, какая часть этого размазывания определяется колебаниями, а какая — перераспределением электронной плотности при переходе от изолированных атомов к атомам в кристалле. В нейтронографии же фиксируются непосредственно тепловые колебания ядер, так как последние сами по себе не размыты. [c.139]

    Индуктивный эффект. При рассмотрении вклада электронов в простую ковалентную связь, образованную двумя атомами, можно видеть, что разделение электронов не всегда эквивалентно. В симметричной молекуле —А (например. Из, СЬ, НО—ОН) два ядра, содержащие соседние связывающие электроны, неразличимы, и в отсутствие каких-либо экстремальных факторов распределение электронной плотности будет симметрично (т. е. электроны поделены равномерно). Если, однако, рассматривать молекулу А—X, где А и X — различные элементы (например, HF, I I), то здесь, естественно, и ядра будут различны. Кроме того, атомы А и X могут сильно отличаться по своей электроотрицательности. В таких условиях вклад электронов в ковалентную связь будет асимметричен (т. е. неэквивалентное распределение) и электронная плотность сместится к более электроотрицательному элементу. Подобное электронное смещение, приводящее в крайних ситуациях к образованию ионов, во многих ковалентных связях вызывает лишь слабую поляризацию связи, обозначаемую [c.25]

    Существование большой группы интерметаллических соединений разнообразного качественного и количественного состава, но сходных по физико-химической природе, обусловлено преимущественным влиянием фактора электронной концентрации. Все эти фазы обладают металлическим характером и кристаллизуются в структурах трех типов р-латуни (ОЦК), -латуни (сложная кубическая структура с 52 атомами в ячейке) и е-латуни (ГПУ). Тип кристаллической структуры определяется не свойствами взаимодействующих компонентов, а так называемой формальной электронной концентрацией (ФЭК), т. е. отношением общего числа валентных электронов (соответствующих номеру группы) к числу взаимодействующих атомов в формульной единице. Эти фазы называются электронными соединениями Юм-Розери. Впервые они были обнаружены в системе Си—2п, и в 1926 г. Юм-Розери выявил закономерности образования подобных фаз. Обычно электронные соединения образуются в системах, содержащих, с одной стороны, [c.385]


    Окислы. Атом кислорода невелик, его радиус меньше радиусов атомов углерода и азота однако настоящие фазы внедрения кислорода — только твердые растворы и низшие окислы переходных металлов. В силицидах и боридах фактором, препятствующим образованию фаз внедрения, является большой атомный радиус, в окислах такой фактор — электронная структура атома кислорода. Электронная оболочка атома кислорода ls 2s 2p имеет два неспаренных электрона. Кислород подчиняется правилу октета, и завершенная электронная структура может быть получена путем приобретения двух электронов. Поэтому у кислорода донорная способность ослаблена склонностью к поглощению электронов. Цирконий и гафний легче отдают электроны, поэтому только титан образует с кислородом фазу переменного состава на основе окисла TiO с преимущественно металлической связью (радиус кислорода в ней 0,7 A) и координационным числом титана 6. [c.236]

    Для выяснения природы Н-связи необходимо выяснить роль разных факторов. Но чем сложнее метод расчета, тем труднее это сделать. Гран [39] первый предпринял попытку оценить роль взаимной поляризации молекул. Для димера воды он получил энергию поляризации 1,4 ккал/моль, для (НР)2 — 1,9 ккал моль. Хотя расчет был упрощенным, он подтвердил важность этого эффекта. Коллман и Аллен [40] разделили энергии димеризации (НР)г и (НгО)2 на две части электростатическую и энергию делокализации . Первая получается при построении ВФ в виде антисимметризованного произведения ВФ мономеров. Она включает обычное электростатическое взаимодействие и обменное отталкивание. Вторая часть определяется как добавка к энергии связи при построении новых МО комплекса из АО обеих молекул. Она соответствует учету поляризации молекул и переносу заряда между ними. При неэмпирическом расчете (НР)г при / ff =2,6, 2,8 и 3,0 А первая часть равна 3,84 5,25 5,20 ккал моль, вторая часть — 2,59 1,49 0,95 ккал моль. Для (НгО) г при/ оо = 2,8 3,0 и 3,2 А первая часть 4,5 5,48 5,29 ккал моль, вторая — 3,05 1,73 1,08 ккал/моль. Видно, что с энергетической точки зрения первая часть важнее. Относительная роль этих факторов в других проявления Н-связи, например в увеличении интенсивности валентного колебания АН, может быть иной. Для (НР)г при Ry =2,8 А и для (НгО)2 при Roo=3,Qк была оценена разность энергий корреляции между электронами в комплексе и в мономерах. Эта величина соответствует дисперсионной энергии в дальнодействующих взаимодействиях. Для (НР)г она оказалась равной 1,53 ккал моль. Для (НгО) г— 1,54 ккал моль. Там же была предпринята попытка подобного разложения значений А , вычисленных по методу ППДП/2. Коллман и Аллен считают, что полуэмпирический метод не дает правильного соотношения между разными факторами. Было бы желательно разделить энергию делокализации на части, соответствующие поляризации мономера и переносу заряда. Для этого нужно закрепить МО одного мономера и строить новые МО другого мономера лишь из собственных АО. Такой прием позволил бы сравнить важность поляризации донора и акцептора. В работе [37] при неэмпирическом расчете раскрытого димера формамида величина SE была разбита на три части энергию кулоновского взаимодействия, обменную энергию, энергию поляризации и переноса заряда. Сумма первых двух (Б ) соответствует электростатической энергии Коллмана и Аллена. Из рис. 3 видно, что при больших кул является главным [c.16]

    Большое влияние на поляризуемость молекулы оказывает динамическое электронное смещение Ed, часто именуемое электромерньш или таутомерным эффектом. Суть его сводится к тому, что под воздействием внешнего фактора усиливается электронное смещение двойных и тройных я-связей вплоть до полного перескока я-электронной пары. Смещение Ed считается отрицательным, когда атом или группа атомов принимают смещенные я-электроны и приобретают отрицательный заряд, и положительным, если атомы или группы атомов отдают я-электронную пару и приобретают положительный заряд. [c.200]

    Параметр а иногда выражают в эрстедах (Э), мегагерцах (МГц) или см Следует подчеркнуть, что расстояние между линиями в спектре в эрстедах находят с по.мощью соотнощения а/зр, в котором а измеряется в эргах, а (3 — в эрг/Э. Если д 2, некорректно приводить расстояние между линиями а в эрстедах. Чтобы получить а в эрстедах, необходимо умножить а, измеренное в эргах, на д(3 и разделить на (где ве — 3-фактор свободного электрона, равный 2,СЮ23193). Поскольку а характеризует энергию, лучще говорить о ней как об энергии. Для этого нужно умножить расстояние между линиями, выраженное в эрстедах, на зР, г/ е Р измеряется в см Э Эти единицы не зависят от 3-фактора. Значение а в МГц получают, умножая а(см ) на с(3-10 ° см/с) и деля на 10.  [c.17]

    В противоположность д-факторам органических свободных радикалов ( -факторы ионов переходных металлов могут заметно отличаться от значения -фактора свободного электрона, равного 2,0023. Такие отклонения дают много информации об электронной структуре комплексов. Различие обусловлено тем, что спин-орбитальное взаимодействие в комплексах многих ионов переходных металлов по величине значительно превьш1ает соответствующее взаимодействие в органических свободных радикалах (см. ниже). Таким образом, для понимания явления ЭПР существенное значение приобретают спин-орбитальные эффекты. [c.209]

    В нефтяном анализе спектроскопия ЭПР до сих пор использовалась главным образом при изучении асфальтово-смолистых и металлсодержащих соединений. Данные ЭПР указывают на присутствие в нефтях стабильных радикалов в концентрациях Ю — 10 г-1, растущих симбатно общей ароматичности нефтяного концентрата [12, 247—250]. В ЭПР спектрах ВМС нефти обычно обнаруживаются два типа поглощения синглетная полоса с ё -фак-тором 2,0025, близким к -фактору неспаренного электрона <2,0032), и мультикомпонентная сверхтонкая структура (СТС) резонансного поглощения с -фактором 2,0183, соответствующая ионам У+ в составе ванадилпорфириновых комплексов.Обнаружены также сигналы с -фактором 1,9995, указывающие на присутствие парамагнитных ядер Со и Си [247, 251, 252]. Сходство СТС асфальтенов и синтетического этиопорфиринового ванадильного комплекса послужило основой для ряда способов определения концентрации ванадия в нефти методом ЭПР [251, 253 и др.]. [c.32]

    Ясно, что величина отдельных ароматических ядер в 3—4 бензольных цикла является лишь средней и этот факт вовсе не исключает возможности присутствия в молекулах ВМС некоторых количеств моно- и бициклоароматических фрагментов, а также более высококонденсированных ароматических систем, обусловливающих плавное снижение поглощения в электронных спектрах вплоть до 500—600 нм. В ЭПР спектрах асфальтенов и смол, как правило, наблюдается довольно интенсивный одиночный сигнал с g-фактором, равным 2,003, т. е. близким к -фактору свободного электрона (g = 2,0023) [221, 914, 1053—1060], а также набор линий СТС, соответствующих, ионам V+ в веществе. Концентрация парамагнитных центров (стабильных радикалов) в молекулах асфальтенов меняется, по ЭПР данным, от 10 до 10 г и растет симбатно ароматичности вещества. Эти экспериментальные факты также свидетельствуют о том, что в молекулах присутствуют достаточно развитые полисопряженные системы, по которым дело-кализованы электроны. [c.195]

    Из предыдущего следует, что для феноменологической термодинамики как с логической, так и с практической точки зрения массы компонентов т- являются естественными или первичными переменными состояния. Поэтому вопрос, как распределена размерность массы на оба фактора правой части уравнения (55.1), для термодинамики имеет подчиненное значение. Новые международные соглашения, которые сформулированы в рекомендациях Международного союза чистой и прикладной физики (ЮПАП) и Международного союза чистой и прикладной химии (ЮПАК) , вводят в единую систему в качестве новой основной величины количество вещества. Соответствующей основной единицей является моль, который определяется как количество вещества системы, которое состоит из стольких же молекул (или ионов, или атомов, или электронов, или других интересующих нас в конкретном случае частиц), сколько атомов содержится в точно 12 г чистого изотопа [c.283]

    Наряду с развитием аналитических методов, учитывающих влияние различных факторов на точность определения потенциала ионизации и потенциала появления, проводились различные усовершенствования аппаратуры для устранения или сведения до минимума эффектов объемного заряда электронного пучка, разброса электронов по энергиям, провисания электростатических полей в ионный источник. Один из наиболее простых методов, с помощью которых может быть уменьшен разброс электронов по энергиям 295], состоит в следующем (рис. 43). Электроны, эмитируемые катодом, ускоряются и направляются в ионизационную камеру под действием потенциала 1/ь Промежуточный электрод / находится под отрицательным потенциалом Уя но отношению к катоду благодаря этому предотвращается попадание в ионизационную камеру электронов с малой энергией. Возрастание ионного тока, наблюдаемого при снижении абсолютного значения Уп на А д (1 1 остается постоянным), представляет собой ионный ток, образуемый моноэнергетичными электронами в диапазоне Лйя- Если абсолютное значение больше, а меньше, то обе эти величины однозначно определяют энергию электронов, образующих наблюдаемую разность в ионном токе. Если разность ионного тока выразить как функцию Ум, сохраняя Ук постоянным, то вблизи потенциала ионизации она становится равной нулю. Подобную схему без особого труда можно осуществить на обычном источнике типа Нира. [c.177]

    Сродство к Фактор ассо-электрону циации через акцептора, -л комплек-эВ I сы, эВ [c.156]

    Соответствие стехиометрическому составу может быть определено по данным весовых измерений МСС в сочетании с данными по расположению катионов металла и анионов хлора, или прямым химическим анализом. Фактор заполнения определяется по отношению показателей У1/У2, где у1 — расчетное отношение атомов углерода к числу ионов металла для одного слоя, а У2 — эта же характеристика, полученная по данным измерений. Согласно [6-10] фактор заполнения находится в иш ервале 0,6-0,9. Верхнее значение соответствует МСС I ступени, Например, исследование МСС I ступени с СоСЬ показало образование непрерывной сетки внедренного вешества, состоящего из кристаллографически упорядоченных доменов размером порядка 1 мкм. В МСС II ступени слои внедренных веществ не образуют сверхрешетки. При образовании изолированных островков в темнопольном электронном микроскопе наблюдается бахрома из блоков муаров. [c.286]

    Рассмотрите правила ориентации для реакций в -тина с учетом статического фактора (распределения электронной плотности в нереагирующей молекуле) и динамического фактора (сравнения устойчивости а-комплексов при о-, м- и -замещении) на следующих примерах I) нитробензоле, 2) анилине, 3) анизоле (ме-тнлфениловом эфире), 4) бензальдегиде. Какие положения в бензольном ядре этих соединений наиболее благоприятны для замещения электрофильными реагентами ( +)  [c.150]

    В общем случае величина и направ.чение дипольного момента молекулы обусловлены наложением четырех основных факторов смещением электронной плотности связывающих электронов к более электроотрицательному атому связи различием в размерах атомных орбига чсй. участвующих в образовании связывающей МО асимметрией этих АО, возникающей вапедствие гибридизации, и асимметрией расположения электронной пJютнo ти несвязывающей (неподеленной) электронной пары относительно ядра. [c.141]

    У полупроводников заполненная электронами валентаая зона и зона проводимости не перекрываются, но близки по энергии. Например, ширина запрещенной зоны для 81 или Ое составляет величину порядка 1,60-10 Дж (1 эВ). При наложении электрического пол , повышении температуры или под действием других факторов электроны в валентной зоне возбуждаются (энергия их возрастает) и они переходят через запрещенную зону в зону проводимости. При этом освобождаются энергетические уровни валентной зоны с более высокой энергией, а проводимость твердых тел возрастает. Освобожденные энергетические уровни могут быть заняты электронами валентной зоны, находящимися на энергетических уровнях с более низкой энергией. Эти электроны таким образом участвуют в проводимости. [c.132]

    Когда оба компонента бинарного соединения располагаются слева от границы Цинтля ив системе существует дефицит валентных электронов, доминирующей является металлическая связь. При этом возникают интерметаллические соединения с плотноупакован-ными кристаллическими структурами, обладающие металлидными свойствами. Формальные стехиометрические соотношения при этом не соблюдаются в силу ненаправлениости и ненасыщенности металлической связи, а также коллективного электронно-атомного взаимодействия из-за дефицита валентных электронов. Формульный состав этих соединений определяется размерным фактором и электронной концентрацией. В этом случае правило октета не выполняется, а разнообразие состава при сохранении плотной упаковки атомов в кристаллических структурах приводит к существованию соединений Курнакова АзВ, АВ, АВз, фаз Лавеса АВа, электронных соединений Юм-Розери и т. п. Таким образом, на основании положения компонентов бинарных соединений в периодической системе можно предвидеть характер химической связи, а следовательно, особенности кристаллохимического строения и свойства этих соединений. [c.55]

    Закоиомер]юстн образования этих соединений обычно обусловлены металлохимическими параметрами низшего порядка — размерным фактором и электронной концентрацией. Типичными представителями интерметаллических соединений являются электронные соединения Юм-Розери, фазы Лавеса, соединения Курнакова Последние со структурной точки зрения близко примыкают к твердым растворам, в чем проявляется единство непрерывности и дискретности при химическом взаимодействии. [c.78]

    При образовании интерметаллических фаз роль разн(зсти электроотрицательностей не может быть определяющей, поскольку элементы, расположенные слева от границы Цинтля, характеризуются сравнимыми величинами электроотрицательнос гей и разность их не превышает 0,8. При оценке разности электроотрицательностей в металлохимических реакциях необходимо использовать значения, характеризующие элементы с низшими степенями окисления, поскольку в интерметаллических фазах высиие степени окисления реализоваться не могут. Определенную роль при взаимодействии металлов друг с другом играют факторы электронной ко]щептрацип и размерный. [c.370]

    В системе Си—Оа фактор электронной концентрации также играет доминирующую роль. Хотя базовые составы промежуточных фаз и отличаются от соответствующих аналогов в системе Си—Ъп (р-фаза СизСа, у-фаза СидОа4, е-фаза СизОаз), однако характерные величины ФЭК, определяющие [c.391]

    Фактор переноса электронов по рсдокс-уров-  [c.354]


Смотреть страницы где упоминается термин Фактор фактор электрона: [c.83]    [c.188]    [c.18]    [c.36]    [c.138]    [c.391]    [c.5]    [c.282]    [c.265]    [c.396]    [c.82]    [c.189]    [c.200]    [c.377]    [c.388]    [c.390]    [c.354]   
Химия Справочник (2000) -- [ c.444 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция электронные факторы

Влияние пространственных и электронных факторов на восстановление окисей гидридом

Влияние электронных факторов на механизм реакции

Влияние электронных факторов на равновесие и кинетику адсорбции

Влияние электронных факторов на устойчивость

Геометрический, электронный и родственные ему факторы в гетерогенном катализе

Диазометан, взаимодействие с циклогександионом электронных факторов

Значение химических факторов для подбора катализаторов.— В. А. Ройтер, Электронный фактор в катализе и проблема подбора катализаторов.— Ф. Ф Волькенштейн

Значение электронного фактора

Значения фактора обратного рассеяния электронов

Катализ на полупроводниках Электронные факторы в полупроводниковом катализе и закономерности подбора катализаторов.— С. 3. Рагинский

Катализ электронные факторы

Кинетика влияние электронных факторов

Кислоты электронных факторов

Механизм электронного экранирования и факторы, влияющие на величину химического сдвига

Некоторые количественные закономерности зависимости реакционной способности от строения веществ. Разделение электронных и пространственных факторов

ОГЛА ВЛЕНИЕ Часть четвертая ИНТЕНСИВНОСТЬ РАССЕЯНИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ КРИСТАЛЛОМ Рассеяние рентгеновских лучей идеальным, малым по размерам кристаллом Рассеяние рентгеновских лучей электроном. Поляризационный фактор

Олефины электронный фактор

Основания электронных факторов на силу

Отраженные электроны фактор обратного рассеяния

Равновесие влияние электронных факторов

Разделение влияний различных электронных факторов на реакционную способность. Полярное сопряжение

Рассеивающий фактор для электрона

Рогинский (СССР). Значение электронных факторов и внутренней кибернетики процессов в предвидении каталитических свойств

Рогинский. Электронные факторы в изыскании и модифицировании твердых катализаторов

СТВ с ядрами многоэлектронных атомов в л-электронных радикалах g-Фактор органических радикалов

Структурные факторы и функция распределения электронной плотности

Структурный фактор и распределение электронной плотности

Фактор свободного электрона

Фактор стабилизированных электронов

Фактор электроном в газовой фазе

Факторы влияющие на электронные спектры

Факторы, влияющие на доступность электронов

Факторы, влияющие на доступность электронов в связях и в отдельных атомах

Электронного парамагнитного резонанса ЭПР метод и влияние парамагнитных ионов фактор

Электронные спектры поглощения гетероциклических соединений Мейсон) Факторы, определяющие поглощение света

Электронные факторы в кинетике реакций

Электронные факторы их влияние на гидрогенолиз разрыв кольца

Электронные факторы их влияние на расщепление амидов

Электронные факторы нуклеофильности

Электронные факторы, их влияние на гидрогенолиз спирто

Электронные факторы, их влияние на гидрогенолиз спирто окисях

Электронный парамагнитный резонанс фактор, анизотропия

Электронный фактор

Электронный фактор в гетерогенном катализе БЭКЕР И Г. ДЖЕНКИНС Теории твердого состояния

Электроны как фактор связи

Этилен электронный фактор



© 2025 chem21.info Реклама на сайте