Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиусы атомные t н структура кристалла

    Согласно законам развития питтингов [45], туннель вдоль оси дислокации не может устойчиво развиваться длительное время, поскольку углубление питтинга возможно не более чем до величины, соизмеримой с его диаметром. В таком случае вклад растворенного объема плохого кристалла в общий баланс растворения металла из всей области поля упругих напряжений дислокации (порядка 100—200 А в поперечнике) будет ничтожным (порядка нескольких атомных объемов), и поэтому следует рассматривать лишь область х 2Ь (т. е. область вне ядра). Тогда деформационный прирост тока Аг с площади, ограниченной радиусом X = 2Ь Гс, с учетом дискретности структуры кристалла будет приближенно равен величине тока с площади кольца радиусом 2Ь и шириной Ь (с учетом Аф 10 мВ < Ь)  [c.61]


    Плотность кристалла ионного типа зависит от атомной массы химических элементов, входящих, в его состав, и от структуры. Понятие структура в большинстве случаев можно заменить величиной атомных или ионных радиусов. Зависимость плотности кристалла от атомной массы и величины атомного радиуса структурных единиц хорошо видна на примере кристаллов меди, серебра, галита и сильвина (табл. 4). При равенстве радиусов атомов плотность [c.48]

    В кристаллах диамагнитная восприимчивость часто оказывается анизотропной, и определением главных восприимчивостей можно воспользоваться для получения информации о структуре кристалла. Этот метод применяется в основном к плоским ароматическим молекулам. В случае молекул такого типа, нам приходится несколько иначе интерпретировать значение в уравнении (12.3). В ароматической системе я-электроны не локализованы у одного атома, а находятся на молекулярных орбиталях, охватывающих всю молекулу. Величина поэтому имеет порядок уже не атомного, а молекулярного радиуса. Следовательно, можно ожи- [c.258]

    Под эффективным радиусом атома или иона понимается радиус сферы его действия, причем атом (ион) считается несжимаемым шаром. Используя планетарную модель атома, атом представляют как ядро, вокруг которого по орбитам вращаются электроны. Последовательность элементов в периодической системе Менделеева соответствует последовательности заполнения электронных оболочек. Эффективный радиус иона зависит от заполненности электронных оболочек, но он не равен радиусу наружной орбиты. Для определения эффективного радиуса представляют атомы (ионы) в структуре кристалла как соприкасающиеся жесткие шары, так что расстояние между их центрами равно сумме их радиусов. Атомные и ионные радиусы определены экспериментально по рентгеновским измерениям межатомных расстояний и вычислены теоретически на основе квантовомеханических представлений. [c.136]

    При изучении структуры кристаллов определяют расстояния между ближайшими атомами или ионами разных знаков. Предполагая (ради удобства и наглядности), что атомы или ионы обладают формой шара, измеренные межатомные расстояния между соседними атомами принимают за сумму радиусов атомов-шаров. Если бы атомы или ионы представляли собой бесструктурные шары, то их взаимодействие зависело бы только от их зарядов и размеров. Однако при взаимодействии элементов существенное значение имеет структура электронных оболочек у реагирующих атомов, поэтому понятие атомный диаметр физически гораздо сложнее. [c.27]


    При изучении структур кристаллов элементарных веществ можно вывести атомные радиусы согласно экспериментально определенным межатомным расстояниям. Рентгеноструктурные измерения ионных соединений в кристаллах также дают расстояния между соседними разнородными ионами. Измеренная сумма радиусов удовлетворяет бесконечному количеству слагаемых. Поскольку атомы одного и того же элемента могут находиться в различных электронных состояниях в зависимости от типа химического соединения, то нельзя подставить в рассматриваемую сумму радиусов значение атомного радиуса, определенного, например, в кристаллах металла. Поэтому для построения шкалы ионных радиусов необходимо использовать теоретически рассчитанные, или непосредственно определенные значения радиуса одного из ионов преимущественно ионного соединения. [c.38]

    Сравните атомные радиусы и структуру элементарных ячеек кристаллов 81, Ge и РЬ. [c.175]

    Для описания структуры -кристалла с точечными атомами достаточно задать радиус-векторы, определяющие положения атомов элементарной ячейки Гр / 2,...Глг, и их атомные номера Z , Z ,...ZN. [c.481]

    Согласно этой теории, катализ происходит только при структурном и энергетическом соответствии катализируемых молекул данному катализатору. Теорией Баландина было предсказано, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. При этих условиях шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей М— — С — С, валентный угол которых близок тетраэдрическому углу. Данным условиям удовлетворяют палладий, платина, иридий, родий, осмий и все они являются активными катализаторами гидрирования бензола и дегидрирования циклогексана. В то же время металлы, обладающие объемноцентрированной структурой, например тантал, вольфрам, даже при почти таких же размерах их атомных радиусов, как у платиновых металлов, а также металлы, имеющие такую же кристаллическую структуру, как платина, но иные размеры атомных радиусов, в частности серебро, золото, или не относящиеся к переходным элементам — медь, цинк,—все эти металлы не проявляют каталитической активности в вышеуказанных реакциях. Таким образом, структура поверхностных соединений бензола и циклогексана с платиновыми металлами была описана и доказана. Мало того, было, в сущности, установлено, что в условиях катализа подобные соединения легко и притом в точности воспроизводятся. Иначе катализ был бы невозможен. [c.59]

    Уменьшение молярного объема до середины малого периода, несмотря на монотонное возрастание молярной массы, обусловлено более резким возрастанием плотности. Действительно, в IA — ША-группах располагаются металлы, обладающие плотноупакованными структурами. Вследствие уменьшения атомных радиусов по периоду слева направо наблюдается уменьшение межатомных расстояний, что в совокупности с увеличением атомной массы и приводит к возрастанию плотности, а следовательно, к уменьшению молярного объема. У простых веществ второй половины малых периодов начиная с IVA-группы в соответствии с правилом 8—N реализуются "рыхлые" структуры с малыми координационными числами, что и приводит к резкому уменьшению плотности, несмотря на возрастание атомной массы. Поэтому молярные объемы во второй половине периода возрастают. Следуя этой закономерности, можно было бы ожидать, что наибольшими молярными объемами в пределах каждого периода должны обладать благородные газы (в кристаллическом состоянии). Однако вследствие образования плотноупакованных структур (хотя и обусловленных силами Ван-дер-Ваальса) плотность их кристаллов оказывается несколько выше ожидаемой, что и приводит к некоторому уменьшению молярного объема. У переходных -металлов с близкими по характеру упаковки кристаллическими структурами в пределах одного периода [c.245]

    В химической практике наиболее широко используются так называемые эффективные (т. е. проявляющие себя в действии) радиусы атомов, рассчитанные из эк.с-периментальных данных по межъядерным расстояниям в молекулах и кристаллах. На размер таких радиусов оказывают влияние различные факторы (структура вещества, характер связи, степень окисления элементов и т. д.). Поэтому необходимо различать радиусы атомов в соединениях с ковалентной, металлической и ионной связями (соответственно ковалентные, металлические и ионные радиусы). Ковалентные и металлические радиусы по смыслу отвечают понятию атомный радиус . [c.46]

    Установление системы ионных радиусов даже более определенно, чем для атомных радиусов. Исходным пунктом является совокупность аналогичных кристаллических структур. Такова, например, структура хлорида натрия и аналогичная серия кристаллов других галогенидов щелочных металлов с гранецентрированной кубической решеткой. В любом случае ионные радиусы представляют относительные величины, и если выбраны исходные ионы металла и галогена, то они представляют относительные размеры внешних электронных оболочек ионов по сравнению с оболочками ионов металла и галогена. [c.453]


    Структуры ионных и металлич. кристаллов можно рассматривать как плотные упаковки сферич. частиц (см. Плотная упаковка). Благодаря плотной упаковке одни и те же структурные типы характерны для кристаллов с ионным и металлич. типом связи. Главный параметр, определяющий возникновение того или иного структурного типа для ионных и металлич. кристаллов,-отношение соотв. ионных и металлич. радиусов компонентов. Ограничение числа реализующихся структурных типов для И. связано с тем, что диапазон изменений металлич. атомных радиусов существенно уже, чем диапазон изменений радиусов катионов и анионов в ионных соединениях. Вместе с тем среди И., как и среди металлов, имеются специфич. кристаллич. структуры. [c.244]

    Структура ионного кристалла определяется кулоновским взаимодействием, и каждый ион окружается максимально возможным числом ионов противоположного знака. В этом случае координационные числа определяются соотношением радиусов катионов и анионов и, как правило, больше, чем в атомных кристаллах, где координационное число определяется прежде всего числом и гибридизацией валентных орбиталей взаимодействующих частиц. [c.91]

    Нельзя рассматривать кристаллы и с чисто ионных позиций. В самом деле, если бы координационнь[е кристаллы слагались нз чистых нонов, их упаковка в пространстве во всех случаях определялась бы только геометрическими факторами (стремилась бы к плотнейшему тниу), т. е. при одинаковых отношениях радиусов катионов и анионов КЧ во всех таких кристаллах должно быть од,1п аковым. Одиако в действительности имеется чрезвычайно широкий спектр всевозможных КЧ у кристаллов разного состава, причем очень часто встречаются противоречия между требованиями геометрии и реальной атомной структурой. [c.101]

    Размеры атомов. Межатомные расстояния определяются главным образом положением минимума функции потенциальной энергии, описывающей взаимодействия между атомами в кристалле. Как же определить размеры атомов или ионов Поскольку функция электронного распределения для атома или иона имеет неопределенную протяженность, ее размеры невозможно определить однозначно и строго. Эти размеры меняются относительно мало при образовании сильных химических связей и еще меньше для слабых связей. Однако небольшие изменения в размерах атомов и ионов зависят от тех физических свойств, которые в данном случае изучаются. Таким образом, они действительно будут изменяться незначительно для различных физических свойств. Для проводимого рассмотрения структуры кристаллов важно, чтобы соответствующее сложение атомных и ионных радиусов давало бы межатомные и межионные расстояния, хар 1ктернзуюшие эти структуры. [c.450]

    Несмотря на удобство описания мн структур с помощью плоских атомных сеток, следует учитывать трехмерный характер координации атомов в структурах кристаллов И Одним из главньк принципов структурообразования для этих кристаллов следует считать предложенный Ф Лавесом в 1967 принцип наиб полного заполнения пространства, к-рое обеспечивается или плотнейшей упаковкой сфер при одинаковом радиусе компонентов (к ч = 12, поры, или пус-тоть7, между атомами имеют конфигурацию тетраэдров и октаэдров), или идеальной упаковкой неск искаженных тетраэдров (характеризуется только одним типом пор- [c.245]

    Химические и физические свойства катионов третьей аналитической группы последовательно изменяются по мере увеличения атомной массы и размера ионного радиуса. Так, ионизационные потенциалы их постепенно понижаются, а нормальные электродные потенциалы растут (табл. 5). Катионная природа наиболее ярко выражена у радия. В соответствии с изменением физикохимических характеристик изменяются и химические свойства данных катионов, в частности растворимость их солей. Так, растворимость сульфатов Ме 04, хроматов МеСг04, оксалатов М еС О , броматов Ме (ВгОз)г и др. последовательно уменьшается в ряду Са +>8г +>Ва +> Ка"+, и лишь растворимость фторидов изменяется в обратном направлении Ва " > 5г > Са . Это объясняется изменением структуры кристаллов, а следовательно, изменением и энергии кристаллических решеток. [c.24]

    Рассмотренные кристаллы называются и о н н ы м и по типу связи, осуществляемой менаду част1щами. Их структура определяется нанболее плотной упаковкой, к которой стремятся ионы под влиянием сил элек-тростатического притяжения разноименных зарядов при определенном соотношении радиусов ионов. Принцип наиболее плотной упаковки в атомном строении кристаллов, предлон<енный Брэггом (1912), применим также н ко многим кристал.лическим веществам другого типа. [c.56]

    Как уже отмечалось ранее (И1 8 доп, 1), каждая молекулярная решетка может быть расчленена на составляющие ее решетки отдельных атомов, что позволяет устанавливать простраяственное расположение атомных ядер и определять расстояния между ними. Если эти внутримолекулярные расстояния d и вытекающие из них ковалентные радиусы атомов (III 6) имеют основное значение для структурной характеристики самих молекул, то с точки зрения структуры кристалла более важны расстояния между молекулами, которые могут быть расчленены на характерные для отдельных атомов радиусы межмолекулярного контакта. Значения последних (в ангстремах) для некоторых элементов сопоставлены ниже  [c.297]

    Металлические твердые растворы. Металлы характеризуются повышенной склонностью растворять металлы и в мень[пей степени неметаллы. Эта способность следствие предельной нелокализованности металлической связи. Вследствие дефицита электронов (см, рис, 64) валентная зона металлическ010 кристалла может принимать некоторое число добавочных электронов, не вызывая изменений структуры и металлических признаков кристалла. Образованию твердых растворов благоприятствует близость химических свойств, атомных радиусов и типов кристаллической структуры исходных вешеств (см. с. III). Несоблюдение одного из этих [c.205]

    Уменьшение молярного объема до середины малого периода, несмотря на монотонное возрастание молярной массы, обусловлено более резким возрастанием плотности. Действительно, в 1А—И1А-группах располагаются металлы, обладаюш,ие плотноупакованны-ми структурами. Вследствие уменьшения атомных радиусов по периоду слева направо наблюдается уменьшение межатомных расстояний, что в совокупности с увеличением атомной массы и приводит к возрастанию плотности, а следовательно, к уменьшению молярных объемов. У простых вепдеств второй половины малых периодов, начиная с 1УА-группы, в соответствии с правилом 8—N реализуются рыхлые структуры с малыми координационными числами, что и приводит к резкому у.меньшению плотности несмотря на возрастание атомной массы. Поэтому молярные объемы во второй половине периода возрастают. Следуя этой закономерности, можно было бы ожидать, что наибольшими молярными объемами в пределах каждого периода должны обладать благородные газы (в кристаллическом состоянии). Однако вследствие образования плот-ноупакованных структур (хотя и обусловленных силами Ван-дер-Ваальса) плотность их кристаллов оказывается несколько выше ожидаемой, что и приводит к некоторому уменьшению молярного объема. У переходных -металлов с близкими по характеру упаковки кристаллическими структурами в пределах одного периода плотность варьирует в сравнительно небольших пределах с общей тенденцией увеличения от начала вставных декад к элементам УИ1В-группы (триады). С учетом монотонного возрастания атомных масс это приводит к относительному постоянству молярного объема. В ряду лантаноидов наблюдается монотонное уменьшение молярного объема, обусловленное возрастанием плотности вследствие уменьшения межатомных расстояний в кристаллах за счет лантаноидной контракции. [c.34]

    Многие бинарные и более сложные структуры описываются в терминах ПШУ и ПШК, если считать, что атомы одного сорта располагаются по местам центров шаров, об- разующих упаковку, а атомы другого сорта — в центрах пустот. При этом шары, образующие ПШУ и ПШК. обычно оказываются неск. раздвинутыми (с учетом атомных радиусов). Во всех ПШУ присутствуют пустоты двух типов — тетраэдрические (окруженные но тетраэдру четырьмя шарами) в октаэдрические (окруженные по октаэдру шестью шарами) в простой кубнч. П1ПК присутствуют кубич. пустоты и т. д. Напр., в кристаллах Na l реализуется трехслойная ПШУ, образуемая атомами С1, где атомы Na занимают все октаэдрич. пустоты. [c.449]

    Геометрическая модель. После того как было исследовано большое число молекулярных кристаллов, появились обобщения и были сделаны выводы [1]. Интересное наблюдение состоит в том, что в молекулярном кристалле между молекулами имеются характеристические кратчайшие расстояния. Межмолекулярные расстояния для взаимодействий данного типа практически постоянны. На основе этого для описания молекулярных кристаллов была построена геометрическая модель. Сначала были найдены кратчайшие межмолекулярные расстояния, затем постулированы так называемые межмолекулярные атомные радиусы . Используя эти значения, стали строить пространственные модели молекул. При подгонке этих моделей эмпирически находили плотнейшую упаковку. Была даже построена простая установка для подгонки молекулярных моделей. Пример упаковки приведен на рис. 9-44, а. Молекулы упаковываются таким образом, чтобы пустое пространство между ними было минимально. В вогнутую часть одной молекулы вставляется выпуклая часть другой. Примером служит упаковка молекул в кристаллической структуре 1,3,5-трифенилбензола. Если затушевать площади, занимаемые молекулами, получится характерный восточный орнамент [44], изображенный на рис. 9-44,6. Комплементар- [c.455]

    Барит, или тяжелый шпат, представляет собой безводный сульфат бария, кристаллизующийся в той же ромбической сингонии, что и сульфат кальция (ангидрит), но отличающийся от него структурой и размером кристаллов. Как и железистые утяжелители, барпт обладает кристаллической решеткой с прочной ионной связью и максимально плотной упаковкой (координационное число — i2). Устойчивость решетки, образованной крупным комплексным анионом [804] , обеспечивается лишь при сочетании его с крупным двухвалентным катионом. Наибольший атомный радиус у бария (2,24 А). У других катионов — стронция и свинца, образующих безводные сульфаты (целестин и англезит), — размеры атомов меньше (2,15 и 1,741). [c.46]

    АТОМНЫЕ РАДИУСЫ, эффективные характеристики атомов, позволяющие приближенно оценивать межатомное (межъядерное) расстояние в молекулах и кристаллах. Согласно представлениям квантовой механики, атомы не имеют четких границ, однако вероятность найти электрон, связанный с данным ядром, на определенном расстоянии от этого ядра быстро убывает с увеличением расстояния. Поэтому атому приписывают нек-рый радиус, полагая, что в сфере этого радиуса заключена подавляющая часть электронной плотности (90-98%). А. р.-величины очень малые, порядка 0,1 нм, однако даже небольшие различия в их размерах могут сказываться на структуре построенных из них кристаллов, равновесной конфигурации молекул и т. п. Опытные данные показывают, что во мн. случаях кратчайшее расстояние между двумя атомами действительно примерно равно сумме соответствующих А. р. (т. наз. принцип аддитивности А. р.). В зависимости от типа связи между атомами различают металлич., ионные, ковалентные и ван-дер-ваальсовы А. р. [c.218]

    Оси. задачи К. систематика кристаллич. структур и описание наблюдающихся в них типов хим. связей интерпретация кристаллич. структур (т.е. выяснение причин, определяющих возникновение данной структуры) и предсказание структур изучение зависимости св-в кристаллич. в-в от их структ ры и характера хим. связи (см. Ионные кристаллы, Кова.чентные кристаллы, Металлические кристаллы, Моле-ку.гчрные кристаллы). В рамках стереохим. аспекта обсуждаются кратчайшие межатомные расстояния (длины связей) и валентные углы, рассматриваются координационные числа и координационные полиэдры. Кристаллоструктурный аспект включает анализ относит, расположения атомов, молекул и лр. фрагментов структуры (слоев, цепей) в пространстве кристаллич. в-ва. При интерпретации кристаллич. структур и их предсказании Широко используют понятие атомных радиксов, ионных радиусов, принцип плотной упаковки атомов и молекул. Нек-рые сравнительно простые кристаллич. структуры удается предсказать путем минимизации потенц. или своб. энергии, к-рая рассматривается как ф-ция структурных параметров. [c.536]

    Кристаллическая структура. Большинство М. кристаллизуется в одном из трех структурных типов (см. Металлические кристаллы), а именно-в кубич. и гексагон. плотнейших упаковках (см. Плотная упаковка) или в объемноцентрированной кубич. решетке. В плотнейших упаковках каждый атом на равных расстояниях имеет 12 ближайших соседей. В объемноцентрированной кубич. решетке у каждого атома 8 равноудаленных соседей, еще 6 соседей расположены на большем (на 15%) расстоянии. Поэтому координац. число в этой структуре считают равным 14 (8 -Н 6). Межатомные расстояния в кристаллич. структуре М. характерюуются металлич. радиусом (см. Атомные радиусы). [c.53]

    Подобно атомным объемам периодический характер имеет и изменение атомных радиусов (см. табл. 5 гл. I), а также в значительной мере и тип кристаллической решетки элемента в твердом состоянии. Б гл. XIII показано, что все щелочные металлы обладают объемпоцентрированной кубической решеткой, а элементы подгруппы 1В образуют гранецентрированные кубы. Элементы нулевой группы, возможно, за исключением гелия, обладают гранецентрированными решетками, а элементы четвертой группы, за исключением свинца, дают кристаллы со структурой алмаза. Точность определения атомных констант позволяет особенно убедительно подтвердить химическое расположение элементов в периодической системе. Закономерное изменение свойств наблюдается даже в таких деталях, как дублетное расщепление в атом-ных спектрах, что видно, например, из следующих данных  [c.193]

    Ионы Li+ (атомные остовы), имеющие электронную структуру расположены по узлам объемноцентрированной кубической решетки. Известно, что радиус иона Li+ составляет О, 68 А. Длина связи Li—Li в молекуле Lia в газе равна 2,674 А, а в кристалле лития расстояние между ближайшими соседями составляет 3,03 А. Однако увеличенную длину связи в кристалле по сравнению с молекулой нельзя рассматривать как признак более слабой связи. Энергия связи в кристалле равна 39 ккал1молъ, а в молекулярном газе эта энергия составляет 13 ккал1молъ. Металлическая связь осуществляется через электроны, образующие газ почти свободных электронов (так называемые электроны проводимости). Атом в решетке, таким образом, связан даже сильнее, чем в молекуле. [c.198]

    Плотность кристалла ионного типа зависит от атомной массы химических элментов, входящих в его состав, и от структуры. Понятие структура в большинстве случаев можно заменить величиной атомных или ионных радиусов. При равенстве радиусов атомов плотность прямо пропорциональна атомной массе (серебро и золото — табл. 4), а при увеличении радиуса повышение атомной массы может не привести к возрастанию плотности (галит и сильвин). Все же наиболее тяжелые минералы содержат элементы с максимальной атомной массой. [c.71]

    Малость длины дебройлевской волны для электрона означает большой радиус сферы Эвальда (см. стр. 268), ее вырождение в плоскость. Это сильно упрощает истолкование электро-нограмм, так как они оказываются прямыми изображениями плоского сечения обратной решетки кристалла. Атомные факторы для рассеяния электронов также пропорциональны атомному номеру, но по своей абсолютной величине они во много раз больше, чем для рентгеновских лучей. Иными словами, электроны взаимодействуют с веществом значительно сильнее, чем рентгеновские кванты. Поэтому они сильно поглощаются веществом, и для исследования его структуры необходимо пользоваться очень тонкими пленками толщиной порядка 10 —10 см, тогда как размеры кристаллов, изучаемых в рентгенографии, порядка 10 см. Исследование необходимо проводить в высоком вакууме. Это делает невозможным применение электронографии для изучения глобулярных белков в их нативном состоянии — вакуум высушит белок. Тем не менее электронография позволяет получить ценные результаты при исследовании фибриллярных белковых структур, синтетических полимеров и других аморфных тел. Существенное преимущество электронографии состоит в том, что она позволяет локализовать атомы водорода (подробное изложение см. в монографиях [31, 32]). [c.275]

    Большое значение имеют исследования структуры поверхности катализаторов. Согласно теории А. А. Баландина катализ происходит только при структурном и энергетическом соответствии реагирующих молекул данному катализатору (1929 г.). А. А. Баландин предсказал, что реакции каталитического гидрирования бензола и дегидрирования циклогексана могут идти только на переходных металлах, имеющих гранецентрированную кубическую структуру или гексагональную структуру и притом атомные радиусы строго определенных размеров. Шестичленные циклы образуют на октаэдрических гранях кристаллов металла шесть связей, валентный угол которых близок к тетраэдрическому углу. Этими условиями обладают п-алладий, платина, иридий, родий, осмий. Предсказание А. А. Баландина полностью подтвердилось. Другие металлы, имеющие такой же атомный радиус, но иную структуру или такую же структуру, но другой атомный радиус, не проявили каталитической активности в упомянутых реакциях. [c.54]


Смотреть страницы где упоминается термин Радиусы атомные t н структура кристалла: [c.494]    [c.401]    [c.141]    [c.345]    [c.151]    [c.277]    [c.142]    [c.507]    [c.54]    [c.146]    [c.199]    [c.458]   
Структуры неорганических веществ (1950) -- [ c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Атомный радиус

Кристалл структура

Кристаллы атомные

Структура атомная



© 2025 chem21.info Реклама на сайте