Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформации синтетических макромолекул в кристаллах

    Рентгеноструктурный анализ фибриллярных белков [75, р. 3 76, р. 603 77] дает картину, весьма бедную рефлексами, вследствие чего прямое определение структуры Фурье-синтезом и построением карт электронной плотности становится невозможным. Вместо этого из рентгенограмм волокна определяют проекцию мономерной единицы на ось спирали (с1) и угол спирального вращения (0). Этих данных, разумеется, недостаточно для нахождения всех углов ф и г з (а иногда и х), и можно надеяться, что конформационный анализ станет важным вспомогательным инструментом при расшифровке структуры, подобно тому, как это уже делается для синтетических макромолекул в кристаллах. Действительно, если из расчета конформаций удастся получить все углы Ф, о]) и Х> то тогда нетрудно будет вычислить координаты атомов и сравнить теоретическое распределение интенсивности рентгенограмм с экспериментальным. [c.382]


    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Возможность существования макромолекул в вытянутой конформации приводит к появлению в полимерных кристаллах выделенного направления — кристаллографической оси с, совпадающей с направлением вытянутых конформаций или, как чаще говорят, с главным, направлением полимерных цепей. Структурная анизотропия, характеризующаяся одним выделенным направлением, существует не только, когда цепи полностью вытянуты, но и тогда, когда под влиянием растягивающего напряжения или других сил клубки хотя бы частично разворачиваются и звенья макромолекул приобретают преимущественную ориентацию. Это приводит не только к механической и оптической, но и к термодинамической анизотропии (именно ее и обнаружил в свое время Джоуль в опытах с растягиванием каучуков). Специфичность свойств полимеров с ориентированными макромолекулами (к ним относятся все полимерные волокна, и природные, и синтетические) потребовало рассмотрения особого ориентированного состояния полимеров, которому в книге посвящена гл. XVI. [c.20]

    Глобулярные кристаллы. В глобулярных кристаллах узлы решетки образуются отдельными макромолекулами в свернутых (или клубкообразных, глобулярных) конформациях, а взаимное расположение глобул в пространстве вполне регулярно, как в любом монокристалле. Формирование глобулярных кристаллов характерно для биополимеров, поскольку обязательным условием образования такой структуры является очень высокая степень однородности макромолекул по размерам, что достигается именно у биополимеров. Наиболее ярким примером такого рода кристаллов является монокристалл вируса табачной мозаики. Для синтетических полимеров такие кристаллы получены не были. [c.90]


    В настоящей главе дан обзор последних достижений в изучении свойств лиотропных жидкокристаллических полипептидов, т. е. концентрированных растворов а-спиральных синтетических гомополипептидов. Хотя конформацию а-спирали, в данном случае спирали синтетических полипептидов, можно рассматривать скорее как явление ограниченного значения по отношению к известным промышленно важным полимерам, критерии и принципы, обусловливающие жидкокристаллическое состояние в растворах полипептидов, могут быть использованы для углубления понимания жидкокристаллического состояния в полимерах, включая термотррпную фазу (жидкокристаллический полимерный расплав). Роль растворителя в лиотропных жидких кристаллах примерно эквивалентна тепловой энергии для термотропных жидких кристаллов опецифические межмолекулярные силы ослабляются в обоих случаях. Кроме того, закономерности упаковки макромолекул с высокоасимметричной формой аналогичны для обоих типов жидких кристаллов. [c.183]

    Индивидуальная макромолекула, обладающая вторичной структурой, представляет собой как бы одномерный кристалл. Подобно обычному кристаллу, такая одномерная упорядоченная система способна при изменении температуры или состава растворителя претерпевать резкий переход, сходный с фазовым. т. е. плавиться , переходя к структуре свернутого клубка, типичной для обычных макромолекул. Переходы спираль— клубок были открыты в 1954 г. Доти. Холтцером, Брэдбури и Блаутом в молекулах синтетического полипептида поли- [--бензил- -глутамата, принимающих спиральную или клубкообразную конформацию в зависимости от состава растворителя, и затем подверглись детальному экспериментальному и теоретическому исследованию. Наиболее важные экспериментальные работы в этой области выполнены Доти и его школой. [c.292]

    Отличительной чертой двухспиральной РНК является независимость конформации от содержания воды в кристалле что наблюдается также для синтетических двухспиральных полирибонуклеотидов. По-видимому, эти отличительные особенности связаны не с тем фактом, что в РНК содержится урацил вместо тимина (в ДНК), поскольку ДНК фага РВ52, которая содержит урацил вместо тимина, обладает обычной для ДНК конформацией 4. Следовательно, можно предположить, что либо тип спаривания оснований в молекуле двухспиральной РНК отличается от того, который имеет место в двухспиральной ДНК, либо каким-то образом на конформацию полинуклеотида влияет остаток сахара, различный в этих двух типах полинуклеотидов. Первое из этих предположений следует исключить, поскольку рентгеноструктурный анализ двухспиральных молекул, получаемых при взаимодействии синтетических полирибонуклеотидов, показывает, что дифракционную картину, близкую к наблюдаемой для двухспиральных РНК, дают лищь те двойные спирали, которые образованы комплементарными полинуклеотидами Таким образом, отличие конформации двухспиральной РНК от двухспиральной ДНК связано, по-видимому, с различиями в строении углеводного остатка в этих двух макромолекулах. [c.262]

    Структура полипептидов в кристаллах и растворах может определяться не только внутримолекулярными взаимодействиями. Межмолекулярные водородные связи между цепями часто приводят к стабилизации конформации цепи, которая была бы невыгодна для изолированной макромолекулы. Классическим примером является р-структура полипептидов, которая на многих конформационных картах проигрывает а-спирали, однако в отличие от последней стабилизируется межмолекулярными водородными связями. Помимо этого, межмолекулярные взаимодействия могут приводить и к стабилизации многотяжевых комплексов, характерных для многих синтетических полипептидов и фибриллярных белков. [c.381]

    Гетеротактический полистирол относится к на 1более известным и технически важным синтетическим продуктам. При растяжении полимера цепные молекулы ориентируются лишь в незначительной степени [918] н добиться появления дихроизма почти не удается [983, 1134]. В спектрах же сополимеров с относительно высоким содержанием стирола дихроизм полос отчетливо проявляется [1483], В противоположность гетеротактическому полистиролу нзотактический полимер, полученный с помощью катализаторов Циглера—Натта, обладает свойствами кристалла и при растяжении хорошо ориентируется. Макромолекулы стереорегулярного полимера имеют спиральную конформацию. В каждом витке спирали содержится три мономерных звена [1227, 1228, 1245], Структура полистирола сходна со структурой полипропилена. [c.259]

    Под конформацпоннымн превращениями в макромолекулах до самого недавнего времени понимали превращения (переходы) спираль — клубок в полипептидах и нуклеиновых кислотах. Предполагалось, что, в отличие от макромолекул нативных белков, нуклеиновых кислот и их синтетических моделей — полипептидов и полинуклеотидов, где внутримолекулярные взаимодействия (в основном, водородные связи) обеспечивают наличие вторичной структуры, внутримолекулярные силы у обычных синтетических поли.меров недостаточны для поддержания уиорядоченности в цепи. Макро.молекулы первых существуют в растворах в конформации одионитевых (белки, полипептиды) или двунитевых (нуклеиновые кислоты, полинуклеотиды) спиралей (см. [251, 510]). Двойная спираль Крика — Уотсона [511] для дезоксирибонуклеиновой кислоты и а-сиираль Полинга — Кори [512] для полипептидов — наиболее известные примеры вторичной молекулярной структуры. Макромолекула в спиральной конформации подобна по своей структуре одномерному кристаллу. Изменением температуры или других условий (состав смешанного растворителя, pH растворителя — [c.252]



Смотреть главы в:

Конфирмации органических молекул -> Конформации синтетических макромолекул в кристаллах




ПОИСК





Смотрите так же термины и статьи:

Конформации макромолекул



© 2024 chem21.info Реклама на сайте