Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полинуклеотиды, водородные связ между цепями

    Специфич. наборы водородных связей между пиримидиновыми и пуриновыми основаниями в комплементарных участках цепей (см. Комплементарность), а также меж-плоскостные взаимод. между соседними основаниями в цепи определяют формирование и стабилизацию вторичной и третичной структуры нуклеиновых к-т. Последовательность пуриновых и пиримидиновых оснований в полинуклеотидной цепи определяет генетич информацию ДНК и матричных РНК. Модификация Пов полинуклеотидах под воздействием мутагенов может приводить к изменению информац. смысла (точковой мутации). [c.530]


    Двуспиральные полинуклеотиды. В большиистве случаев ДНК существует в виде двойной спирали Уотсона — Крика (рис. 1 1). Ее основные характеристики сводятся к следующему. Две поли-дезоксирибонуклеотидные цепи соединены друг с другом с помощью водородных связей и образуют правовинтовую спираль вокруг общей оси. Цепи двойной спирали антипараллельиы и комплементарны, т. е. образование водородных связей (поперечных) всегда происходит между основаниями С и О или А и Т. [c.335]

    Здесь и далее мы испо.пьзуем термин первичная, вторичная, третичная и четвертичная структуры нуклеиновых кислот в следующем смысле. Первичная структура — последовательность пуклеозндпых звеньев, соединенных фосфо-диэфирной связью в непрерывную и неразветвленную полинуклеотидную цепь. Вторичная структура — в случае одноцепочечных, главным образом монотонных полинуклеотидов, — пространственное расположение нуклеозидных звеньев, обусловленное межплоскостным взаимодействием оснований. В случае двух комплементарных цепей вторичная структура представляет собой жесткую двойную спираль, стабилизованную как ме.жплоскостным взаимодействием соседних оснований в пределах одной цепи, так и водородными связями между противолежащими основаниями в параллельных цепях. Третичная структура образуется в результате реализации наряду с двухспиральными иных типов фиксированной укладки полинуклеотидных цепей. Четвертичная структура — пространственное расположение взаимодействующих макромолекул (обычно полинуклеотидов и полипептидов) в нуклеопротеидах — рибосомах, вирусах и т. д. [c.16]

    Свойством полинуклеотидных молекул является способиость к точному воспроизведению, основанная на принципе структурной ком-плементарности. В модельных опытах было показано, что полинуклео-тидная цепь может служить матрицей, связывающей свободные нуклеотиды. При смешивании АМФ с полиуридилоеой кислотой свободные молекулы АМФ связываются с остатками полиуридило вой кислоты при помощи водородных связей между комплементарными основаниями. В результате возникала спиральная структура. Точно так же наблюдали формирование устойчивой комплементарной спирали при смешивании полицитидиловой кислоты с гуанозинмонофосфатом. Для синтеза комплементарных полинуклеотидов необходимо было, чтобы между связанными с матрицей мононуклеотидами образовались меж-нуклеотидные связи. Экспериментально была показана принципиальная возможность возникновения таких связей без какого-либо участия ферментов. Таким образом, полинуклеотиды могли служить матрицей для неферментативного синтеза (Комплементарных полинуклеотидов. [c.174]


    Вторичная структура молекулы ДНК, по Уотсону и Крику, представляет собой а-спираль, состоящую из двух полинуклеотид ных цепей, закрученных одна вокруг другой и вокруг общей для обеих цепей оси (рис. 92). Эти цепи связаны водородными связями между молекулами пиримидиновых и пуриновых оснований. Причем было установлено, что такого рода прочные связи образуются лишь между, специфическими парами аденин — тимин, гуанин — цитозин  [c.557]

    Влияние pH на конформации полинуклеотидных цепей в растворе обусловлено тем обстоятельством, что водородные связи, стабилизующие спиральную структуру, образуются в этих молекулах между группами, способными к ионизации, и поэтому ионизация хотя бы одной из групп, участвующих в об.разовании водородной связи, означает одновременно разрыв последней, что ведет к изменению конформации молекулы. В этом случае мы встречаемся с ярким примером специфических взаимодействий, о которых говорилось ранее применительно к полипептидам (см. 26, 27). Действительно, ионизация оснований, т. е. процесс отдачи или связывания протона (соответственно для кислотных и основных ионизуемых групп) осуществляется лишь при отсутствии водородных связей в спиральной форме такой процесс не имеет места. Пуриновые и пиримидиновые основания, входящие в ДНК и синтетические полинуклеотиды, образуют водородные связи между аминогруппой и атомом азота, включенным в цикл, с одной стороны, и группой —МН—СО — с другой. Отрицательные логарифмы констант диссоциации этих групп соответственно равны —2,9 (гуанин) 3,7—3,8 (аденин) 4,5—4,8 (цитозин) р/Скн-со 9,5—11,4 (гуанин, тимин, урацил). Поскольку аминогруппа присоединяет протон, а группа —NH—СО— отдает его, то первая заряжена при pH < рКш2 а вторая при pH > рКш-со- Таким образом, в диапазоне рК 2 < рН < / АГын-со пуриновые и пиримидиновые основания не заряжены, и здесь возможно существование спиральной конформации молекул. Интересный [c.372]

    Какую роль можно приписать Mg++ при получении смешанных двойных спиралей поли-А и поли-У, учитывая, что цепи полинуклеотидов в спиральной структуре удерживаются вместе за счет водородных связей между комплементарными основаниями  [c.355]

    Далее оказалось, что простые полинуклеотидные цепочки обладают способностью давать значительно большее разнообразие спиральных комплексов, чем природные сополимеры сложного состава. Так, цепи составленные из одних пиримидиновых полинуклеотидов, дают спиральные комплексы сами с собой. Это явление не противоречит теории, так как условия для образования водородных связей между основаниями здесь налицо  [c.229]

    Детальный анализ всевозможных вариантов образования водородных связей между основаниями показал, что в биспиральной молекуле ДНК основания уложены парами пурин из одной цепи и пиримидин из другой в соответствии с правилами Чаргаффа. Поскольку ориентация оснований на плоскости не является, очевидно, произвольной, и основания в полинуклеотидах представлены в лактамной форме, наиболее вероятными были признаны пары аденин-тимин и гуанин-цитозин. Этот способ спаривания получил в дальнейшем экспериментальное подтверждение. Избирательность взаимодействия пар А-Т и Г-Ц принято выражать термином комплементарность , а соответствующие азотистые основания называют комплементарными. Стабильность А-Т оснований обеспечивается двумя водородными связями, а пар Г-Ц - тремя, что в свою очередь определяется особенностями расположения функциональных групп азотистых оснований. Длина водородных связей между основаниями составляет около 0,3 нм. Таким образом, комплементарными оказываются не только отдельные основания, но и дезоксирибонуклеотидные цепи ДНК [c.108]

    В работах [63—65] были измерены температуры плавления других биологически важных макромолекул, синтетических полинуклеотидов и природных нуклеиновых кислот. В упорядоченном состоянии молекула дезоксирибонуклеиновой кислоты состоит из двух спирально переплетенных цепей. Кристаллографическая структура, определенная Криком и Уотсоном [66], допускает только один способ образования пар гетероциклическими основаниями, входящими в состав каждой из этих цепей. Анализ состава нуклеиновых кислот показывает, что концентрация пуриновых оснований равна концентрации пиримидиновых оснований поэтому образование пар через водородную связь, по статистическим соображениям, возможно только между адени-ном (А) и ТИМИНОМ (Т), и между гуанином (Г) и цитозином (Ц). При плавлении цепи разделяются и переходят в беспорядочно свернутое состояние. [c.134]

    При нагревании растворов природной рибосомной РНК или РНК некоторых вирусов, например вируса табачной мозаики (ВТМ) (стр. 152), наблюдаются такие же, хотя и менее четко выраженные, изменения. Это говорит о том, что в некоторых местах цепь РНК сгибается на себя таким образом, что пары оснований сближаются и соединяются водородными связями, образующимися между аденином и урацилом и между гуанином и цитозином (фиг. 20). Поскольку сегменты цепи, сближающиеся таким путем, могут оказаться не точно комплементарными, образование пар облегчается тем, что некоплементарные участки образуют выступающие петли (буква X на фиг. 20). Как показал рентгеноструктурный анализ, те участки молекулы, в которых цепь РНК сгибается на себя, имеют спиральное строение. Таким образом, молекула РНК представляет собой, по-видимому, полинуклеотид-ную цепь, некоторые участки которой имеют форму коротких и неполных спиралей. Б этих участках образуются пары оснований [c.56]


    Только что описанный метод — изучение кинетики ферментативного гидролиза полинуклеотидов — применяется в основном для определения числа цепей в структуре [296, 297[. Метод основан на том, что одноцепочечная структура будет расщепляться ири гидролизе хотя бы по одной межнуклеотидной связи, в то время как для расщепления двухцепочечной структуры необходимо, чтобы разрыв произошел, по крайней мере, в двух местах. Если предположить, что существование индукционного периода при понижении молекулярного веса не является результатом первоначального разрыва водородных связей в особых участках молекулы, то с помощью кинетики гидролиза можно различить одно-, двух-, трехцепочечные структуры или структуры с большим числом цепей. Далее, результаты, полученные при действии панкреатической ДНК-азы на ДНК из зобной железы теленка, показали, что минимальное число нуклеотидов между разрывами в двух цепях, при котором сохраняется двухтяжная структура, равно примерно шести. Отсюда ясно, что для того чтобы молекулярный вес ДНК уменьшался, ферментативное расщепление каждой из цепей должно происходить внутри участка из шести нуклеотидных пар (рис. 8-26). [c.600]

    Исследование нуклеиновых кислот стало в последнее десятилетие одной из наиболее заманчивых областей в молекулярной биологии. С химической точки зрения как дезоксирибонуклеиновая кислота (ДНК), так и рибонуклеиновая кислота (РНК) являются полинуклеотидами, основное звено которых состоит из фосфатной группы, сахара (рибозы или дезоксирибозы) и основания (пуринового или пиримидинового) основная цепь полимера представляет собой фосфоэфир, причем на одно повторяющееся звено приходится шесть атомов цепи в соответствии с моделью двойной спирали, предложенной Уотсоном и Криком [106]. В ДНК две антипараллельные цепи полинуклеотидов завернуты в спираль и соединены друг с другом водородными связями, образующимися между гетероциклами оснований. Макромолекула РНК представляет собой однотяжную спираль, вторичная структура которой определяется внутримолекулярными взаимодействиями. Полагают, что наиболее устойчивой из нескольких возможных структур является двутяжная спираль, образуемая участками одной и той же макромолекулы, подобная спирали ДНК, но участки с некомплементарными основаниями на периферии спирали образуют петли 1107, 108]. Для того чтобы лучше понять вторичную структуру нуклеиновых кислот, были приготовлены синтетические полинуклеотиды. Эти модельные соединения широко исследованы почти теми же средствами, что и синтетические полипептиды, моделирующие структуру белков. [c.118]

    Крика. По этой модели молекула ДНК состоит из двух очень тош<их длинных цепей, закрученных правильными витками вокруг одной общей для них оси в двойную спираль (она похожа на электрический шнур, состоящий из двух переплетающихся проводов). В 1969 г. в Калифорнийском университете (США) при огромном увеличении удалось получить электронно-микроскопический снимок, на котором хорошо видны обе сппрали молекулы ДНК (рис. 54). В бактериальной клетке длина молекул ДНК достигает 1 см, а в клетке человеческого тела более 1 м. Каждая из двух цепочек представляет собой полинуклеотид, т. е. полимер, в котором остатки сахара двух соседних нуклеотидов связаны фосфатными группами. Между собой такие полинуклео-тидные цепочки соединены азотистыми основаниями. При этом пуриновые основания, состоящие из двух колец, связаны слабыми водородными связями с пиримидиновыми основаниями, состоящими из одного кольца. Этими же связями удерживаются вместе две цепи всей молекулы. [c.143]


Смотреть страницы где упоминается термин Полинуклеотиды, водородные связ между цепями: [c.165]    [c.312]    [c.119]    [c.108]    [c.119]    [c.355]    [c.608]    [c.19]    [c.525]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Водородные связи

Полинуклеотиды

Связь водородная, Водородная связь

Цепь водородная



© 2025 chem21.info Реклама на сайте