Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спиральные конформации синтетических полипептидов

    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]


    В соответствии с терминологией, предложенной Линдер-стрём-Лангом [ ], можно сказать, что молекулы обычных полимеров в растворе не обладают вторичной структурой, тогда как молекулы биологически активных полимеров и их синтетических аналогов могут ее иметь. При этом первичной структурой макромолекулы называется число и расположение химических связей в молекуле, а вторичной — регулярная пространственная спиральная структура с определенной периодичностью, стабилизуемая водородными связями. Исследованию вторичных структур биологически активных макромолекул посвящено громадное количество работ, в которых были определены параметры спиральных конформаций для большого числа синтетических полипептидов и полинуклеотидов, а также для природных нуклеиновых кислот и белков. В последнем случае, наряду с вторичной структурой, большую роль играет также третичная структура молекул, т. е. взаимное расположение спиральных и неспиральных участков, обусловленное взаимодействием боковых групп цепи, в частности, связями 5—8. Наиболее известные примеры вторичных сгруктур представляют собой а-спираль Полинга — Кори [2> ] для полипептидов и двойная спираль Крика — Уотсона [ ] для дезоксирибонуклеиновой кислоты (ДНК). Эти структуры [c.291]

    Дальнейшее исследование инфракрасных спектров поглощения и их дихроизма показало, что синтетические полипептиды, состоящие из остатков Ь-аминокислот, у которых водород р-уг-лерода замещен на какие-либо другие группы, имеют большей частью неспиральную конформацию. В табл. 1 аминокислоты были расположены в порядке, соответствующем их тенденции образовывать в полипептидах а-спиральные или неспиральные структуры. Так, поли-Ь-лейцин образует а-спираль, а поли-Ь-ва-лин — складчатую р-структуру. Тот факт, что полипептиды, образованные из этих весьма похожих друг на друга аминокислот, имеют столь различные структуры, указывает на существенную зависимость вторичной структуры от свойств аминокислотных остатков, входящих в полипептидную цепь. Вполне возможно, что степень спирализации некоторого участка белка зависит от числа и порядка расположения аминокислот, способствующих образованию спиральной конформации. [c.256]

    Спиральные конформации синтетических полипептидов [c.118]

    Остатки с низкими относительными статистическими весами значительно укорачивают среднюю длину спирали. Чтобы оценить спиральный потенциал данного белка, было использовано одно значение параметра инициации а = 5 10 (разд. А.4). Кроме того, были введены три различные значения х для всех типов остатков. Так, 5 -= 0,385 соответствовало остаткам, прерывающим спираль (В), 5 1, 00 — индифферентным к спирали (/) и з=1,5 — образующим спираль (Н) (табл. 6.1). Значения а и х получают по наклонам и температурным переходам зависимостей, описывающих переходы спираль — клубок в синтетических полипептидах, используя уравнения (А. 18) и (А.20). Спиральная конформация предсказывается для всех положений остатков I, для которых / , больше средней величины В результате получаются непрерывные потенциальные функции, поскольку уравнение (6.2) учитывает кооперативность модели Зимма — Брэгга, согласно которой спирали должны иметь определенную длину (рис. А. 1). Этот метод предсказания дает спиральные сегменты длиной около 10 остатков, что намного меньше длины, ожидаемой для данного значения а гомополимеров при 5= 1, т. е. Ь 1/"5 10 = 40 (уравнение (А.17)). Такое укорочение спирали является следствием включения остатков с низкими значениями 5. [c.139]


    Было показано, что синтетические полипептиды, такие, как поли-7-бензил-1-глутамат, в твердых пленках (см. стр. 68) и в определенных органических растворителях (см. стр. 103) существуют в спиральной, стержнеобразной конформации. Полагают, что фактором, играющим основную роль при возникновении и сохранении этой конформации, является образование водородных связей между группами СО и ЫН пептидных связей. Многие синтетические полипептиды являются полиэлектролитами. Примером могут служить полиглутаминовая кислота и полилизин, повторяющиеся звенья которых имеют следующее строение  [c.577]

    Конформацию хаотического клубка принимают в растворе цепи многих синтетических полимеров, но для биологических макромолекул, находящихся в нормальном или биологически активном состоянии, она не характерна. В гл. XIV были описаны характерные для полипептидных цепей типы спиральных форм, стабилизируемых водородными связями между пространственно близкими пептидными группами. В этом разделе мы остановимся на обратимых переходах от хаотического клубка к а-спирали — форме, типичной для многих синтетических полипептидов, — при отсутствии взаимодействия между боковыми цепями. Тем же закономерностям подчиняются переходы в полипептидах с самыми различными боковыми цепями, в частности в белках. [c.282]

    Одно из основных заключений, которое можно вывести на основании рентгенографических данных для этих белков, состоит в том, что молекулы глобулярных белков должны быть относительно компактны и симметричны. Молекулы должны быть такими, чтобы они могли целиком войти в элементарную ячейку с симметрией, соответствующей кристаллографической пространственной группе. Это очень сильно ограничивает выбор размеров молекул, и, кроме того, требуемые размеры неизменно являются размерами относительно компактной фигуры. В элементарную ячейку ни в коем случае нельзя поместить длинные полностью вытянутые или спиральные полипептидные цепи, подобные тем, которые встречаются в синтетических полипептидах и фибриллярных белках. Например, в гемоглобине каждая полипептидная цепь (каждая молекула молекулярного веса 33 500 состоит из двух цепей) содержит около 150 остатков аминокислот. Кроме того, в молекуле гемоглобина нет никаких дисульфидных мостиков, которые могли бы препятствовать образованию полностью вытянутой или спиральной конформаций цепей. Длина каждой цепи гемоглобина [c.76]

    Была проведена интересная работа по использованию оптического вращения для определения структуры молекул в случае полипептидных цепей белков и синтетических полипептидов, приготовленных из оптически активных аминокислот. При рассмотрении синтетических полипептидов в разделах 4д и 5г было показано, что эти вещества можно приготовить таким путем, чтобы они в твердом состоянии находились в высококристаллических формах, в которых отдельные полипептидные цепи имеют спиральную конформацию, показанную на рис. 16. В разделе 5в были представлены спектроскопические доказательства того, что спиральная конформация может сохраняться и в том случае, если молекулы диспергированы в растворе. При последующем изложении в этой книге мы часто ссылаемся на синтетические полипептиды. Далее будет убедительно доказано, что а-спиральная конформация в самом деле является стабильной конформацией этих молекул во многих растворителях. Однако это справедливо не для всех растворителей. В растворителях, которые имеют сильную тенденцию к образованию водородных связей, карбонильные и иминогруппы полипептидной цепи будут стремиться образовать водородные связи в первую очередь с растворителем, а не друг с другом и при этом а-спираль не будет сохраняться. Вместо этого полипептидные цепи свертываются случайным образом и не имеют предпочтительной формы. [c.141]

    Белки и синтетические полипептиды, являющиеся простейшими моделями белков, интересны в том отношении, что способны образовывать в растворах вторичные структуры, такие, как а-спираль или р-структура. Наряду с образованием упорядоченных конформаций макромолекулы этих полимеров могут находиться и в конформации статистического клубка, характерной для макромолекул большинства синтетических полимеров в растворах. Изменяя свойства растворителя или температуру раствора, можно наблюдать образование или разрушение упорядоченных конформаций, т. е так называемые конформационные переходы, которые играют существенную роль в биологических процессах. Поэтому задача количественной оценки степеней спиральности или [c.119]

    Переход от а-спирали к статистическому клубку (свободное вращение вокруг связей С—С и С —N) в разбавленном растворе синтетического полипептида может быть вызван нагреванием или добавлением денатурирующих средств (обычно сильных кислот) [6]. Однако, поскольку жесткая, вытянутая конформация молекул полимера необходима для получения жидкокристаллического состояния в растворе полипептида, мы рассмотрим только те экопериментальные условия, в которых существует конформация а-опирали. Учитывая это, мы можем рассматривать спиральный полипептид как цилиндрический стержень, содержащий внутреннее стержнеобразное ядро значительной жесткости, которое окружено пластичной оболочкой из гибких боковых цепей, перемешанных с растворителем. [c.184]


    Строение важнейших биологических полимеров. На основании изучения строения аминокислот (из остатков которых составлены белковые молекулы), синтетических полипептидов и ряда других соединений Л. Полинг и Р. Кори в 1951 г. высказали гипотезу о существовании спиральной конформации в макромолекулах, содержащих пептидные связи типа [c.205]

    Колебательный спектр бесконечно длинной спиральной молекулы был проанализирован при исследованиях натуральных и синтетических полипептидов [663]. При этОхМ рассматривали модель спиральной цепи, в которой группы атомов объединяются в звенья сильными связями, а контакт между звеньями осуществляется за счет слабых связей. Установлена зависимость между углом закручивания спирали и расщеплением частот, относящихся к атомам, связанным сильной связью. Более подробно эта проблема изучена в работе [1169]. На примере изотактического полипропилена было показано [991], что все полосы спиральной конформации должны быть поляризованы. Слабый дихроизм или его отсутствие является следствием перекрывания полос, относящихся к различным типам колебаний. Подобный подход к анализу стереорегулярности позволяет из спиральной симметрии вывести определенные правила отбора. Взаимодействие между колебаниями групп, относящих ся к соседним звеньям и происходящих с постоянной разностью фаз, вызывает расщепление полос, разрещенных правилами отбора, на две компоненты, поляризованные перпендикулярно относительно друг друга (см. гл. 3). [c.142]

    Выше было показано, что уравнения (10) и (11) позволяют оценивать содержание а-спиралей в синтетических полипептидах и белках в воде и смесях метанол — вода. В основе метода лежит предпосылка, что ДОВ в видимой и близкой ультрафиолетовой областях спектра определяется двумя эффектами Коттона, характерными для конформации а-спирали, и двумя эффектами Коттона, характерными для клубкообразной конформации. Естественно, возникает вопрос, все ли данные для синтетических полипептидов и белков подходят для такого анализа Мы вычислили Л(а,р)(193) и Л(а, р)225 Для поли-l-серина и поли-ь-пролина 11 (табл. 2) — двух синтетических полипептидов, которые, как было показано, не имеют а-спиральной конформации [22, 23]. Оказалось, что точки, полученные для этих полипептидов, не ложатся на прямую, изображенную на рис. 2. Аналогичные расчеты были проделаны для двух [c.223]

    Для смесей, состоящих частично из а-спиральной и частично из клубкообразной конформаций, в качестве прямой меры а-спиральности было предложено [9] вращение при 233 ммк в длинноволновой впадине на кривой ДОВ а-спиральных синтетических полипептидов. Когда измерения были распространены на область более коротких длин волн [10] и был обнаружен пик при 198 ммк, аналогичным образом было предложено использовать величину вращения в этом пике. Применяя значения параметров эффектов Коттона (сил вращения, полуширин и положений), найденных с помощью анализа на электронно-вычислительной машине (решение 2, табл. 14, и решение 3, [c.265]

    Спектрополяриметрический метод был использован для изучения изменений конформации, вызываемых введением дополнительных пептидных цепей в молекулу инсулина по трем его свободным аминогруппам [15]. Исходный инсулин спирален на 25%, модифицированный лизином — на 32—33%, модифицированный глутаминовой кислотой — на 3—16%. Если к растворам синтетической полиглутаминовой кислоты добавить некоторые красители (акридин оранжевый, псевдоизоцианин) и измерить дисперсию оптического вращения в области 560—360 нм, то при pH 5,5 кривая ДОВ имеет плавный характер (полимер в неупорядоченной конформации) при pH ниже 5,1, когда полимер приобретает спиральную конформацию, дисперсия оптического вращения становится аномальной, причем величина вращения резко возрастает. Это связано с адсорбцией красителя на спиральной полипептидной цепи, в результате чего полоса поглощения красителя становится оптически активной [16]. Дальнейшее развитие спектрополяриметрического метода позволило перейти к прямому измерению эффекта Коттона в области 185—240 нм, непосредственно связанного со спиральностью молекул белков и полипептидов (обзор см. [17]). [c.638]

    Птицын рассмотрел влияние гидрофобных взаимодействий на степень спиральности полипептидной цепи [101]. Имеется ряд данных, свидетельствующих об этом влиянии на структуру синтетических полиаминокислот. Фасман проанализировал стабильность таких полимеров по отношению к действию дихлор- и дифторук-сусной кислот и показал, что стабильность поли-Ь-метионина, поли-Ь-аланина и поли-Ь-лейцина значительно выше, чем у поли-Ь-карбобензокси-Ь-лизина (— (СНа) 4—NH—СОО—СНг— eHs) и поли- -бензил-Ь-глутамата (—(СНг) г—СОО—СНг— eHs) [115]. Включение неполярных боковых групп в водорастворимые полипептиды увеличивает стабильность их спиральных конформаций. Это подтверждается данными для ряда других синтетических полипептидов [116—120]. [c.233]

    Обе эти формы легко различимы по характерным значениям оптического вращения. Как и в случае нативных и денатурированных белков, беспорядочно ориентированные синтетические полипептиды имеют очень малое вращение, и то время как спирализованные полипептиды обладают большой вращательной способностью. Различие между спиральной конформацией и клубком особенно заметно при рассмотрении кривых дисперсии оптического вращения в далекой ультрафиолетовой области. Блу (1961) сообщил о вращении, измеряемом десятками тысяч градусов. Для этой цели был успешно применен новый прибор для определения спектров кругового дихроизма (Руссель — Улаф, 1961). [c.712]

    В упомянутых исследованиях основное внимание уделялось спиральным конформациям гомополипептидов, на которые в то время возлагали большие надежды как на ближайших структурных аналогов белков. Действительно, пространственное строение синтетических полипептидов и белков определяется одними и теми же видами взаимодействий между валентнонесвязанными атомами и одинаковой природой этих взаимодействий. Химическая регулярность синтетических полипептидов допускает реализацию ограниченного числа периодических структур, которые, как показали рассмотренные исследования, сравнительно легко оцениваются теоретически. Они-то прежде всего и привлекали к себе внимание, поскольку трехмерные структуры белков представлялись в соответствии с концепцией Полинга-Кори набором регулярных вторичных структур. Автор не стоял на этих позициях и уже тогда был убежден, что гетерогенность аминокислотных последовательностей белков должна вести не только к регулярным, но главным образом к множеству апериодических структур. Наши исследования в данной области, начавшиеся в 1968 г, [20] также под влиянием работы Рамачандрана и соавт. [58], имели иное назначение. Они были направлены исключительно на изучение конформационных возможностей свободных монопептидов и после своего завершения составили содержание первого этапа на пути к решению структурной проблемы белковых молекул. Главные цели этих первых конформационных иссле- [c.156]

    Первые данные о взаимосвязи получены на синтетических гомополимерах. Первая корреляция между аминокислотной последовательностью и вторичной структурой была установлена Блоутом и сотр. [328]. На основе опытов с синтетическими гомополиме рами — полипептидами, поли-01ц, поли-Ьуз и т. д., они исследо вали способность к образованию и к нарушению а-спирально структуры аминокислотных остатков семи типов (табл. 6.1). К спи ралеобразующим были отнесены остатки, которые принимали а спиральную конформацию, а к спираленарушающим — те, которые такую конформацию не принимали. [c.129]

    Влияние pH на конформации полинуклеотидных цепей в растворе обусловлено тем обстоятельством, что водородные связи, стабилизующие спиральную структуру, образуются в этих молекулах между группами, способными к ионизации, и поэтому ионизация хотя бы одной из групп, участвующих в об.разовании водородной связи, означает одновременно разрыв последней, что ведет к изменению конформации молекулы. В этом случае мы встречаемся с ярким примером специфических взаимодействий, о которых говорилось ранее применительно к полипептидам (см. 26, 27). Действительно, ионизация оснований, т. е. процесс отдачи или связывания протона (соответственно для кислотных и основных ионизуемых групп) осуществляется лишь при отсутствии водородных связей в спиральной форме такой процесс не имеет места. Пуриновые и пиримидиновые основания, входящие в ДНК и синтетические полинуклеотиды, образуют водородные связи между аминогруппой и атомом азота, включенным в цикл, с одной стороны, и группой —МН—СО — с другой. Отрицательные логарифмы констант диссоциации этих групп соответственно равны —2,9 (гуанин) 3,7—3,8 (аденин) 4,5—4,8 (цитозин) р/Скн-со 9,5—11,4 (гуанин, тимин, урацил). Поскольку аминогруппа присоединяет протон, а группа —NH—СО— отдает его, то первая заряжена при pH < рКш2 а вторая при pH > рКш-со- Таким образом, в диапазоне рК 2 < рН < / АГын-со пуриновые и пиримидиновые основания не заряжены, и здесь возможно существование спиральной конформации молекул. Интересный [c.372]

    Статистические веса можно рассчитать на основании геометрии и вандерваальсовых сил. Идея использования для предсказания методов статистической механики наиболее широко разрабатывалась Шерагой и сотрудниками. Котельчук и Шерага [363, 364] основывали свои предсказания на упрощенном методе, описанном в приложении при выводе уравнения (А.4). Они рассчитали статистические веса и z для каждого остатка кроме Gly и Pro, которые были рассмотрены отдельно. В расчетах они учитывали вандерваальсовы взаимодействия (гл. 3) между различными частями цепи. Поскольку рассматривалась система, состоящая из цепи и растворителя, был включен также член, учитывающий вклад свободной энергии растворителя. Для каждого остатка конформация с наибольшей величиной z принята за его склонность (табл. 6.1). Поскольку предпочтения состояния аь обнаружено не было, то выявились только спиральные (=ак) и случайные (клубок = = не ац) склонности. Отметим, что сделанные с помощью этих расчетов Оценки хорошо согласуются с экспериментальными данными по синтетическим полипептидам [328] и с эмпирическими данными, [c.136]

    В настоящей главе дан обзор последних достижений в изучении свойств лиотропных жидкокристаллических полипептидов, т. е. концентрированных растворов а-спиральных синтетических гомополипептидов. Хотя конформацию а-спирали, в данном случае спирали синтетических полипептидов, можно рассматривать скорее как явление ограниченного значения по отношению к известным промышленно важным полимерам, критерии и принципы, обусловливающие жидкокристаллическое состояние в растворах полипептидов, могут быть использованы для углубления понимания жидкокристаллического состояния в полимерах, включая термотррпную фазу (жидкокристаллический полимерный расплав). Роль растворителя в лиотропных жидких кристаллах примерно эквивалентна тепловой энергии для термотропных жидких кристаллов опецифические межмолекулярные силы ослабляются в обоих случаях. Кроме того, закономерности упаковки макромолекул с высокоасимметричной формой аналогичны для обоих типов жидких кристаллов. [c.183]

    Индивидуальная макромолекула, обладающая вторичной структурой, представляет собой как бы одномерный кристалл. Подобно обычному кристаллу, такая одномерная упорядоченная система способна при изменении температуры или состава растворителя претерпевать резкий переход, сходный с фазовым. т. е. плавиться , переходя к структуре свернутого клубка, типичной для обычных макромолекул. Переходы спираль— клубок были открыты в 1954 г. Доти. Холтцером, Брэдбури и Блаутом в молекулах синтетического полипептида поли- [--бензил- -глутамата, принимающих спиральную или клубкообразную конформацию в зависимости от состава растворителя, и затем подверглись детальному экспериментальному и теоретическому исследованию. Наиболее важные экспериментальные работы в этой области выполнены Доти и его школой. [c.292]

    Для синтетического полипептида поли-р-бензил-Ь-аспартата, растворенного в хлороформе, 6o=-f611. Следовательно, его молекулы имеют структуру левой а-спирали. Это заключение согласуется с малой стабильностью а-спирали в данном случае. Достаточно добавить в раствор этого полипептида в хлороформе дихлоруксусную кислоту в концентрации примерно 10%, чтобы вызвать переход к конформации хаотического клубка. В случае поли- -бензил-Ь-глутамата, имеющего структуру правой спирали, для перехода спираль — клубок требуется, чтобы отношение концентраций дихлоруксусной кислоты и хлороформа было равно приблизительно 70 30. Если в молекуле содержание левых и правых спиралей одинаково, то Ьо О. В отсутствие других форм вторичной структуры параметр Ьо служит мерой избыточного содержания спиральных форм одного из двух типов. Большая часть белков спирализуется, по-видимому, только в форме правой а-спирали. В этих случаях Ьо может служить непосредственно мерой содержания спиральных структур .  [c.290]

    Пептидная группа такого остатка может, очевидно, образовать только одну водородную связь, типа показанной на стр. 66, вместо двух. Полагают, что неспособность коллагена образовывать структуры с максимальным числом водородных связей, предложенные Полингом и сотрудниками, обусловлена именно этим фактом. (Интересно, что синтетический полипептид пoли-L-пpoлин тоже не принимает ни а- ни Р-конформации, типичные для других полипептидов. В его структуре совершенно отсутствуют водородные связи, но тем не менее она спиральна . Однако структура полн-/.-пролина не идентична структуре коллагена.) [c.72]

    Хорошо известно (см., например, [8—11]), что молекулы биополимеров в растворе могут обладать различными конформациями в зависимости от температуры, состава растворителя, концентрации водородных и других ионов в нем. Так, молекулы ДНК и синтетических полинуклеотидов в растворе могут либо иметь структуру двойной спирали, стабилизуемой внутримолекулярными водородными связями и силами ван-дер-ваальсового взаимодействия (диполь-дипольными и дисперсионными), действующими между гидрофобными группами, либо находиться в конформации статистического клубка, в которой отсутствует упорядоченная система внутримолекулярных водородных связей. Синтетические полипептиды, в том числе полипептиды, несущие ионизуемые группы, как например поли-Ь-глутаминовая кислота, поли-Ь-ли-зин, также могут находиться либо в стабилизуемой внутримолекулярными водородными связями и ван-дер-ваальсовыми силами спиральной конформации, либо в конформации клубка. Глобулярные белки обладают компактной структурой, стабилизованной гидрофобными взаимодействиями и характеризующейся в ряде случаев наличием спиральных областей при денатурации компактная структура разрыхляется, спиральные области разрушаются. [c.19]

    Конформация полипептида в растворе частично определяется прямым взаимодействием пептидных групп друг с другом. То обстоятельство, что синтетические по-липептидй имеют высокорегулярную, кристаллическую структуру, тогда как многие другие- полимеры аморфны, т. е. обладают структурой беспорядочного клубка, в принципе свидетельствует о наличии некой естественной конформации для полипептидов. Результаты тщательной оценки длины связей и валентных углов, основанной на размерах, установленных для планарных пептидных связей в кристаллах небольших пептидов, существенно ограничили число возможных моделей конформации полипептидов. Дальнейшие ограничения в выборе возможной конформации были связаны с тем, что, согласно исходным предположениям, каждая карбонильная и каждая амидная группа пептида участвует в образовании водородной связи и что конформация полипептида должна соответствовать минимальной энергии вращения вокруг одинарной связи. Этим требованиям для пептидов, в которых имеются внутримолекулярные связи, отвечала правая спираль, содержащая 3,6 аминокислотных остатка на один виток (так называемая а-спираль) [1].. Существование спиральных структур предсказанных размеров в синтетических полипептидах было подтверждено с помощью самых различных физических методов, в том числе и методом рентгеноструктурного анализа. Такая а-спираль, в которой каждая пептидная группа соединена водородной связью с третьей от нее пептидной группой, считается наиболее вероятной моделью отдельных участков остова молекулы глобулярных белков, к которым относятся и ферменты. Нужно подчеркнуть, однако, что конформация глобулярного белка в целом отличается от простой регулярной а-спиральной структуры из-за наличия, в белке дисульфидных связей и остатков пролина, которые нарушают спиральное строение и изменяют ориентацию цепи, а также из-за взаимодействия боковых цепей, ответственного за третичную структуру. Действительно, рентгеноструктурный анализ с высоким разре- [c.25]

    Полимерные цепи образуют в кристаллическом состоянии чаще спиральные, чем плоские конформации, и Натта успешно применил свои постулаты к определению кристаллической структуры ряда полимеров. К системам, слишком сложным для такого подхода, можно иногда применять приближенное рассмотрение, согласно которому главной частью рассеяния, определяющего картину рентгеновской дифракции, является рассеяние от изолированной спирали. С Te.x пор, как этот метод был предложен несколько лет тому назад Кохраном, Криком и Вандом его плодотворность была доказана анализом многих полимерных систем, как природных (например, в работах Кохрана и Крика о синтетических полипептидах), так и синтетических (например, в работах Коррадини и Ганиса и Чатани о иоли-л-ме-тилстироле). [c.170]

    Спектры полипептидов и фибриллярных белков имеют полосы амид I и II, частоты которых различны для цепей разных конформаций. Эмброз и Эллиот [2] нашли, что для вытянутой формы эти частоты примерно на 25— 30 см 1 меньше, чем для а-формы (являющейся, как позже было показано Полингом и Кори, а-спиральной формой). Это можно наблюдать в спектрах некоторых синтетических полипептидов, представленных на рис. 4.9 и 5.2. Позже было установлено, что полипептидные цепи также могут существовать в форме беспорядочного клубка, в которой [c.121]

    Всем белкам в водных растворах свойственно левовращение при длине волны В-линии натрия. За исключением белков группы коллагена [59], большинство из них имеет удельное вращение [а ]э в пределах от —20 до —70°, которое при полной денатурации понижается до (—80) — (—120) . Этот факт подтверждает существование в нативных белках каких-то общих для всех белков элементов структуры и позволяет считать, что в процессе денатурации происходит разрушение этих упорядоченных конформаций. После открытия а-спиральной конформации в синтетических Ь-полипептидах предположили, что та же спираль является одним из основных элементов структуры белков. И действительно, теперь это доказано методами рентгенографии для белков миоглобина и гемоглобина [47, 48, 50]. Однако совсем недавно Луззати и др. [61 ] высказали утверждение, что в разбавленных растворах молекулы поли-у-бензил-Ь-глутамата находятся в виде спирали Зю, а не а-спирали. Для этих исследований использовали метод рассеяния рентгеновских лучей под малыми углами и другие физические методы. Это породило дискуссии относительно точности спиральных моделей, предложенных для синтетических полипептидов, поскольку Доти, Блоут и сотр. ранее представили убедительное доказательство существования а-спирали. В этой главе автор будет продолжать изложение, предполагая существование а-спирали. ДОВ как синтетических полипептидов, так и белков имеет много общего. И денатурированные белки, и полипептиды в конформации статистического клубка имеют простую дисперсию Друде, тогда как белки, принадлежащие к группе фибриллярных мышечных белков, по-видимому, являются копией спиральных полипептидов. Денатурация и переход спираль — клубок (раздел Г-6) вызывают заметное увеличение лёвовращения. С другой стороны, глобулярные белки, в структуру которых, как полагают, входят спиральные сегменты, также характери- [c.107]

    Приготовление других оптически активных полимеров, так же как и получение синтетических полипептидов и полинуклеотидов (раздел Г и О), доставляет много трудностей химикам, занимающимся синтезом полимеров. Это в значительной степени обусловлено поисками возможных стереорегулярных конформаций этих полимеров в жидкой фазе. В самом деле, из данных инфракрасной спектроскопии для изотактического полистирола следует, что этот полимер, по-видимому, сохраняет свою спиральную структуру в сероуглеродном растворе ИЗО, 131]. Но в полимерах, не имеющих асимметрических заместителей, как правая, так и левая спирали (если спиральная конформация существует) должны иметь одинаковую вероятность. Однако введение асимметрических боковых групп будет, вероятно, способствовать отбору предпочтительной структуры, что обусловлено взаимодействием боковых групп с основной полимерной цепью. Данные рентгенографических исследований также говорят о том, что на кристалличность изотактических полимеров очень сильно влияет природа заместителей у основной цепи [132]. Что касается оптически активных полимеров, то ДОВ, естественно, станет очень полезным и мощным методом исследования структуры таких полимеров. Речь идет не только о характеристическом вращении звеньев полимерной цепи, с которым связан удобный способ идентификации и характеристики этих полимеров, но и о том, что сама природа однонаправленной спиральной конформации (если таковая существует в растворах) может обусловливать заметный дополнительный вклад и оптическое вращение. Однако до сих пор в литературе имеется очень мало данных по ДОВ рассматриваемых полимеров такое положение, безусловно, будет исправлено в ближайшие годы. [c.123]


Смотреть страницы где упоминается термин Спиральные конформации синтетических полипептидов: [c.183]    [c.183]    [c.28]    [c.123]    [c.133]    [c.150]    [c.28]    [c.190]    [c.594]    [c.103]    [c.125]   
Смотреть главы в:

Макромолекулы в растворе -> Спиральные конформации синтетических полипептидов

Макромолекулы в растворе -> Спиральные конформации синтетических полипептидов




ПОИСК





Смотрите так же термины и статьи:

Конформации полипептидов

Полипептиды



© 2025 chem21.info Реклама на сайте