Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ПРАКТИКА КАЧЕСТВЕННОГО АНАЛИЗА Химические и физические методы анализа

    Современная неорганическая химия состоит из многих самостоятельных разделов, например химии комплексных соединений, химии неорганических полимеров, химии полупроводников, металлохимии, физико-химического анализа, химии редких металлов, радиохимии и т. п. Неорганическая химия давно перешагнула стадию описательной науки и в настоящее время переживает свое второе рождение в результате широкого привлечения квантовохимических методов, зонной модели энергетического спектра электронов, открытия валентнохимических соединений благородных газов, целенаправленного синтеза материалов с особыми физическими и химическими свойствами. На основе глубокого изучения зависимости между химическим строением и свойствами она успешно решает главную задачу создание новых неорганических веи еств с заданными свойствами. Неорганическая химия, как и любая естественная наука, руководствуется методологией диалектического материализма, следовательно, опирается на ленинскую теорию отражения От живого созерцания к абстрактному мышлению и от него к практике... . Живое созерцание осуществляется, как правило, при помощи эксперимента — наблюдения явлений в искусственно созданных условиях. Из экспериментальных методов важнейшим является метод химических реакций. Химические реакции — превращение одних веществ в другие путем изменения состава и химического строения. Во-первых, химические реакции дают возможность исследовать химические свойства вещества. Аналитическая химия использует химические реакции для установления качественного и количественного состава вещества. Кроме того, но химическим реакциям исследуемого вещества можно косвенно судить о его химическом строении. Прямые же методы установления химического строения в большинстве своем основаны на использовании физических явлений. Во-вторых, на основе химических реакций осуществляется неорганический синтез. За последнее время неорганический синтез достиг большого успеха, особенно в получении особочистых соединений в виде монокристаллов. Этому способствовало применение высоких температур и давлений, глубокого вакуума, внедрение бесконтейнерных способов синтеза и т. п. [c.7]


    Идеально количественные методы измерения должны учитывать природу, величину и распределение напряжений в образце, однако на практике это оказывается трудно осуществимым. В некоторых случаях при использовании физических методов определяются средние значения и получают качественную характеристику природы и распределения внутренних напряжений. Исследования зависимости физических свойств от внутренних напряжений во многих случаях дают возможность установить количественные соотношения между рассматриваемыми характеристиками и внутренними напряжениями с учетом физической сущности механизма их возникновения. Эти исследования имеют большое практическое значение, так как часто не столь важно знание точной величины или распределения изменяющихся напряжений, как их возможное влияние на поведение материала в процессе формирования и эксплуатации, а также установление корреляции между свойствами материала, на которые влияют внутренние напряжения, и долговечностью. Важным аспектом таких исследований является изучение концентрации напряжений в зависимости от различных физико-химических факторов. Для исследования внутренних напряжений наиболее широкое применение нашли методы измерения оптических, магнитных свойств и электрического сопротивления, а также методы рентгеноструктурного анализа. [c.55]

    В настоящей книге сделана попытка дать краткое систематическое изложение сущности математических методов составления уравнений скоростей реакций и расчета кинетических констант, нашедших наибольшее распространение в теории и практике математического моделирования химических процессов. Главное внимание уделено методологии построения моделей кинетики реакций и алгоритмов отыскания кинетических констант. Рассматривается химическая и физическая интерпретация реакций, составление стехиометрических и кинетических уравнений элементарных и суммарных реакций, качественный и количественный анализ типов математических моделей и правомерность применения их к различным химическим процессам. [c.5]

    Новые виды выпускаемой народным хозяйством продукции по качественным и технико-экономическим характеристикам должны соответствовать передовым достижениям мировой науки и техники. В этих условиях возрастает роль технического анализа, основная задача которого и в химической и нефтехимической промышленности— наиболее полно и четко определить необходимые химические и физические свойства сырья, промежуточных соединений, катализаторов, вспомогательных материалов, различных реагентов и конечных продуктов производства с учетом специфических особенностей их назначения и применения. Это возможно при постоянном совершенствовании методов анализа и внедрении новых приемов оценки качества продукции в практику промышленных предприятий. [c.4]


    В отличие от первого издания, в котором излагался как макрометод, так и полумикрохимический метод, в данном учебнике описывается только полумикрохимический метод качественного анализа неорганических веществ. Кроме реакций ионов, обычно рассматриваемых в такого рода курсах, в учебнике приводится описание реакций и способов разделения наиболее важных редких и рассеянных элементов дается понятие о физических и физико-химических методах анализа, а также о теории и практике методов титрования в неводных растворах, получивших за последнее время широкое практическое применение в различных областях химической науки и промышленности. [c.9]

    С возникновением органической химии многие химики стали постепенно переключаться на работы в этой новой области, продолжая, однако, одновременно и химико-аналитические исследования. Этим и следует объяснить факт, что в первые десятилетия XIX в. происходило быстрое развитие и совершенствование классических методов качественного и количественного химического анализа, возникали и внедрялись в практику новые физические и химические методы анализа веществ. [c.332]

    В развитии теории и практики анализа кремнийорганических соединений большую роль сыграли многочисленные экспериментальные работы, выполненные советскими и зарубежными исследователями. Особые успехи достигнуты в области разработки методов качественного и количественного анализа кремнийорганических соединений, химических, физических и физико-химических методов определения функциональных групп и химических связей в кремнийорганических соединениях, методов их очистки и идентификации, определения степени чистоты, пофаз-ного контроля производства. [c.34]

    Химия карбониевых ионов является в настоящее время одним из наиболее бурно развивающихся направлений органической химии. Существование частиц этого типа было установлено еще в начале нашего века позднее широкое распространение получили представления о важной роли карбониевых ионов в разнообразных превращениях органических соединений, в частности в многочисленных катионоидных перегруппировках. Это стимулировало детальное изучение кинетических и стерео-химических характеристик реакций, в которых постулировалось промежуточное образование карбониевых ионов. Анализ получаемых при этом данных являлся в течение длительного времени основным источником информации об особенностях строения и реакционной способности подобных частиц, так как число выделенных в виде солей карбониевых ионов было невелико. Широкое внедрение в исследовательскую практику в последние 10—15 лет ряда новых физических методов исследования, в первую очередь спектроскопии магнитного резонанса на ядрах Н, F и С , сделало возможным прямое наблюдение многих типов карбониевых ионов в растворах, что ознаменовало начало качественно нового этапа в изучении карбониевых ионов и привело к резкому расширению фронта исследований. Результаты этих исследований имеют важное значение как для теоретической, так и для синтетической органической химии, и поэтому необходимо возможно более, полное их освещение в отечественной литературе. [c.3]

    Применение современных методов физического и химического эксперимента открывает большие возможности для обогащения проб. Для группового разделения компонентов пробы или выделения отдельных микрокомпонентов может применяться любая процедура, которая не приводит к искажению результатов анализа. Для практического использования метода она должна быть достаточно простой. Поэтому наибольшее значение приобретают методы химического обогащения пробы, основанные на приемах, получивших широкое распространение в практике количественного и качественного химического анализа (хотя не исключается возможность использования более сложных физических и химических методов разделения). [c.431]

    В первой четверти текущего столетия такая задача представлялась практически не выполнимой. Даже качественный анализ любого из перечисленных продуктов следовало оценивать как трудное и продолжительное исследование, в результате которого можно было получить весьма ограниченную информацию. Данные же о количественном составе можно было получить в основном лишь для тех или иных групп соединений, например, данные о содержании 2ЭВ, сложных эфиров, кетоков и т. д. В 1930—1940 гг. была разработана аналитическая ректификация. С ее помощью исследуемый продукт делили на большое число фракций приблизительно равного объема, рассчитывая таким путем получить чистые компоненты и ряд бинарных смесей с тем, чтобы потом установить их состав физическими методами. Результаты анализов отдельных фракций суммировали. В дальнейшем аналитическая ректификация непрерывно совершенствовалась. Физические методы анализа стали распространять и на тройные смеси терпенов [148, 322]. Внедрение аналитической ректификации в практику химических лабораторий позволило выполнить большинство перечисленных задач. Однако трудоемкость метода и продолжительность каждого из перечисленных исследований ограничивали его применение. [c.163]


    Из большого числа разнообразных химических и физических методов аналитической химии, широко используемых в практике химического анализа, ни один не является универсальным, так как не позволяет за один прием осуществлять полный качественный и количественный анализ любого объекта любой сложности по составу и количеству пробы. Безусловно, химико-ана-литики добиваются хороших результатов путем комплексного применения серии различных методов разложения, разделения, концентрирования и конечного определения. Однако при этом, как правило, сам анализ значительно усложняется, становится слишком трудоемким, в нем появляется слишком много источников систематических ошибок. Так называемые ускоренные или упрощенные методы анализа в большинстве случаев позволяют получать лишь полуколичественные данные. [c.3]

    Кроме ценных теоретических обобщений, развитие физической химии дало аналитикам ряд новых экспериментальных методов и приемов работы. Все эти методы имеют большое значение и широко применяются в научно-исследовательских и заводских лабораториях, что значительно увеличивает возможности качественного и количественного анализа и во мь-огих случаях имеет ряд ценных преимуществ перед химическими методами. Однако последние остаются основой для разработки физических и физикохимических методов и потому по-прежнему играют ведущую роль в аналитической практике. [c.43]


Смотреть страницы где упоминается термин ПРАКТИКА КАЧЕСТВЕННОГО АНАЛИЗА Химические и физические методы анализа: [c.16]    [c.39]   
Смотреть главы в:

Курс химического качественного анализа -> ПРАКТИКА КАЧЕСТВЕННОГО АНАЛИЗА Химические и физические методы анализа




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Анализ физические

Анализ химический

Качественный методы

Методы анализа физические

Методы анализа химические

Методы физические

ЧАПТЬ ВТОРАЯ ПРАКТИКА КАЧЕСТВЕННОГО АНАЛИЗА Химические и физические методы анализа



© 2025 chem21.info Реклама на сайте