Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характеристики сцинтилляционных кристаллов

    Характеристики сцинтилляционных кристаллов [c.39]

    Цифровая радиоскопия с использованием дискретных детекторов. Детекторы. Современные линейные матрицы радиационных преобразователей используют такие детекторы, как газовые ионизационные камеры, подключенные к малошумящим усилителям, сцин-тилляционные кристаллы, сочлененные с ФЭУ или фотодиодом. Важными характеристиками таких детекторов являются низкий уровень собственного шума и крутой фронт выходного сигнала (без большого послесвечения при использовании твердотельных кристаллов). Сцин-тилляционные кристаллы должны иметь достаточно большой световой выход, согласованный по спектру с входом светового детектора. С учетом ограничений по габаритам и стоимости кремниевые фотодиоды являются наиболее часто используемыми в качестве световых детекторов. Сцинтилляционные кристаллы, сочлененные с такими световыми детекторами, должны иметь световы-ход со спектром, смещенным в красную сторону. [c.98]


    Важнейшими характеристиками при этом являются коэффициент преобразования, динамический диапазон, инерционность, геометрические размеры. При использовании одиночных детекторов первого поколения можно было использовать сцинтилляционные кристаллы с ФЭУ, которые обладают высокой чувствительностью, удовлетворительным динамическим диапазоном (10 ) и малой инерционностью. Применение ФЭУ из-за их значительных габаритов затруднительно при использовании линейки, состоящей из большого числа детекторов. Для этих случаев применяют ионизационные газовые детекторы, полупроводниковые детекторы и сцинтилляционные кристаллы с полупроводниковыми фотодиодами. [c.190]

    ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ХАРАКТЕРИСТИК СЦИНТИЛЛЯЦИОННОГО -СПЕКТРОМЕТРА НА КРИСТАЛЛЕ Na (Tl) [c.70]

    Люминесцентные характеристики некоторых сцинтилляционных кристаллов. [В т. ч. NaJ(Tl) и KJ(Tl)]. [c.156]

    Сцинтилляционная характеристика кристаллов NaJ Tl) в зависимости от концентрации Т1. [c.156]

    В результате активных поисков в последние годы был найден ряд доступных для практического применения сцинтилляторов, каждый из которых обладает определенными достоинствами. Из органических фосфоров антрацен дает наибольший выход фотонов — около 15 на каждые 1000 эв рассеянной в кристалле энергии. В настоящее время промышленность выпускает кристаллы антрацена достаточной для использования в опытах величины. Кристаллы стильбена дают примерно вдвое меньший по сравнению с антраценом световой выход, но при этом весьма полезны для применения в методике совпадений, так как импульс имеет малое время спадания — порядка 10" сек. Хорошими выходами и временными характеристиками обладают жидкие растворы, такие, как /г-терфенил или стильбен в ксилоле либо в толуоле они легко приготавливаются в больших объемах. Если в такие жидкие сцинтилляторы добавлены соединения бора или кадмия, то они становятся эффективными детекторами нейтронов. (Для упоминавшегося вскользь на стр. 61 эксперимента с нейтрино был создан жидкостный сцинтилляционный счетчик с чувствительным объемом 300 л.) Существуют также сцинтилляторы, введенные в пластмассы кроме того, сообщалось о некотором прогрессе в применении сцинтилляций в благородных газах. [c.156]

    Исследования по методу совпадений с применением в качестве детекторов магнитного спектрометра и сцинтилляционного спектрометра с кристаллом Nal показали, что квант с энергией 0,675 Мэв совпадает по времени пе только с электронами конверсии кванта с энергией 0,412 Мэв, но и с -спектром с граничной энергией 0,290 0,015 Мэв. Этот спектр имеет разрешенную форму, его интенсивность составляет около 1% интенсивности основного -спектра. При исследовании на магнитном спектрометре образца с высокой активностью удалось обнаружить третий -переход с интенсивностью 2,5-10 от интенсивности основного спектра и граничной энергией 1,37 Мэв, представляющий собой, по-видимому, переход в основное состояние. На основании формы спектра можно полагать, что для этого перехода А/ = 2, да (т. е. четность меняется изменение четности — да). Таким образом, можно приписать характеристику 2— . Значение lg ft = 11,8, рассчитанное по уравнению (25) гл. VHI, согласуется с этим предположением. [c.429]


    При обычной защите фон торцовых счетчиков составляет 10—20 имЫмин при полной эффективности регистрации Р-излучения 10—15%, которая в основном определяется телесным углом счетчика. При регистрации у-излучения радиоактивных изотопов сциитилляциопными счетчиками может быть получена более высокая полная эффективность регистрации, которая в случае применения больших сцинтилляционных кристаллов с колодцем приближается к 100%. Однако большой объем кристалла и высокая эффективность для у-излучения приводит к значительному повышению уровня фона счетчика, который оказывается выше фона торцового счетчика в 40—50 раз. Поэтому характеристики таких счетчиков по отношению к измерению слабых активностей примерно одинаковы. [c.117]

    Счетная характеристика сцинтилляционного счетчика при регистрации а-излучения. На рис. 7 приведена блок-схема сцинтилляционного счетчика. Регистрируемое излучение источника 1 вызывает сцинтилляции в кристалле 2, которые при помощи фотоэлектронного умножителя 3 преобразуются в импульсы напряжения. Выходные импульсы с анода ФЭУ через катодный повторитель 4 подаются на усилитель 5. Усиленные импульсы напряжения с выхода усилителя поступают на дискримина- тор 6. С выхода дискриминато- ра сигнал поступает на пере- счетное устройство 7. Для пита- ния фотоэлектронного умножителя используют высоковольт- I ный стабилизированный выпоя-митель 5. Для питания катодного повторителя применяют низковольтный стабилизированный, выпрямитель 9. [c.29]

    К основным характеристикам сцинтилляционного спектрометра относятся полная эффективность, фотоэффективность, фоточасть, светосила и энергетическое разрешение. Все эти характеристики просто определяются из распределения электрических импульсов от моноэнергетического у-излучения, которые зависят как от энергии, так и от взаимодействия излучения с веществом. При взаимодействии у-излучения с веществом сцинтиллятора выделяемая световая энергия в кристалле прямо пропорциональна энергии падающих у-квантов. Поскольку остальные элементы сцинтилляционного спектрометра можно считать линейными, амплитуда электрического импульса на выходе счет-но-анализируемой электронной схемы может служить мерой энергии регистрируемого излучения. [c.70]

    Счетчики квантов рентгеновского излучения. К наиболее употребительным счетчикам квантов рентгеновского излучения относятся ионизацио((ные и сцин-тилляциониые счетчики. Принцип работы ионизационных счетчиков, к которым относится, в частности, счетчик Гейгера — Мюллера, основан иа способности рентгеновского излучения ионизировать газы, а сцинтилляционных — на способности рентгеновского излучения вызывать люминесцентное свечение некоторых веществ в виде всрышек — сцинтилляций видимого света. Преимуществом сцинтилляционных счетчиков перед ионизационными является высокая эффективность (процентное отношение числа зарегистрированных квантов к числу всех квантов, попавших во входное окно счетчика) при регистрации жесткого рентгеновского излучения, малое мертвое время (время, в течение которого счетчик, зарегистрировав квант, остается нечувствительным к следующему кванту) и практически неограниченный срок службы при хорошей герметизации кристалла — сцинтиллятора. В табл. 10 приведены некоторые характеристики серийно выпускаемых счетчиков. [c.77]

    В качестве детекторов для спектрометрии р-излучения можно использовать органические монокристаллы, а также жидкие и пластмассовые сцинтилляторы. Наиболее эффективные из органических сцинтилляторов — кристаллы антрацена С14Н10, несколько уступает ему стильбен С14Н12. Однако более удобны для использования в бета-спектрометрах пластмассовые сцинтилляторы, представляющие собой твердые растворы сцинтиллирующих веществ в полистироле, поливинилтолуоле и других полимерах, хотя эффективность преобразования энергии регистрируемого излучения в световую энергию люминесценции (конверсионная эффективность) в них составляет 60—70% эффективности антрацена. Пластмассовые сцинтилляторы, имея хорошие и стабильные сцинтилляционные характеристики, в то же время могут быть получены в виде блоков достаточно больших размеров. Легкость механической обработки позволяет придавать сцинтилляторам любую требуемую форму. [c.214]

    В 1962 г. Кармен с сотр. [13] разработал метод ГЖРХ, в котором используется окисление меченых соединений до двуокиси углерода и воды при пропускании потока газа, выходящего из колонки, над нагретой окисью меди. При анализе соединений, содержащих Н, образующаяся тритированная вода восстанавливается нагретым железом до газообразного трития. После этого газовый поток, содержащий СОг и Нг, проходит через ловушку с кристаллами антрацена, и радиоактивность в антраценовом детекторе постоянно измеряется сцинтилляционным счетчиком. Схема прибора приведена на рис. 7.3. Кармен с сотр. изучал характеристики прибора при изменении некоторых параметров детектора, в частности его размеров. При увеличении диаметра кюветы уменьшается эффективность регистрации — для Н в большей степени, чем для С. Величину эффективности регистрации измеряли при различных рабочих напряжениях фотоумножителей. Она изменяется от 65 до 86% для <С и от 10 до 12% для Н. Фоновая скорость счета довольно высока и составляет 30—50 имп/мин при измерении С и 100 имп/мин при измерении Н. Было обнаружено, что основная величина фона обусловливается шумами фотоумножителей заметный вклад вносят и такие факторы, как конденсация следов меченых ве- [c.205]


    Всякое флуоресцирующее органическое соединение является потенциальным сцинтиллятором или компонентой сцинтилляционной системы. Его эффективность в качестве сцинтиллятора определяется такими молекулярными характеристиками, как спектры испускания и поглощения, квантовый выход флуоресценции, время затухания флуоресценции и т. д., и поэтому число эффективных сцинтилляционных соединений ограниченно. Общей чертой строения эффективных органических сцинтилляторов является то, что они содержат ненасыщенные плоские ароматические молекулы, обычно полициклические углеводороды и их производные, у которых имеются л-электронные системы, способные давать флуоресценцию и (или) осуществлять межмолекулярный перенос энергии. Этому требованию удовлетворяют все чистые кристаллы, первичные и вторичные растворенные вещества, используемые в практически осуществленных сцинтилляционных системах. Сказанное относится также к алкилбензолам и ароматическим виниловым полимерам, которые использунзтся в качестве растворителей в лучших сцинтилляторах с жидкими и пластическими растворами. [c.153]

    Среди большого числа исследованных органических соединений несколько, а именно антрацен, транс-стильбен и п-терфенил, обычно применяются в виде монокристаллов в сцинтилляционных счетчиках. Другие соединения, такие, как п-квартерфенил, выполняют функции смесителя спектра и используются в виде слоя кристаллического порошка в сочетании с газовыми сцинтилляторами, тогда как некоторые другие соединения с большой величиной ( ох)о и подходящим спектром испускания применяются в качестве первичных и вторичных растворенных веществ в жидких и пластических растворах. При выборе подходящих веществ для различных целей важно учитывать не только сцинтилляционные характеристики, но и другие факторы, такие, как стоимость, доступность, легкость приготовления, очистки и выращивания кристаллов, давление паров и растворимость. [c.207]

    Основные типы приборов, используемых для обнаружения и измерения излучений радиоактивных веществ, рассматривались в гл. V. В данной главе обсуждаются отдельные методы, применяемые в исследованиях такого рода. Выбор метода работы и измерительной аппаратуры в большой степени определяется характером требуемой информации. Если речь идет просто о методе радиоактивных индикаторов, когда работу ведут с одним радиоактивным изотопом, характер излучения, количество и степень чистоты которого удовлетворяют поставленной задаче, часто бывает достаточно одного измерительного прибора (пропорционального или сцинтилляционного счетчика, или счетчика Гейгера — Мюллера). Техника измерений в таком случае не представляет трудностей. Иногда, напротив, приходится силами целой лаборатории ядерной химии изучать характеристики излучения ряда радиоактивных изотопов, идентифицировать новые излучатели и количественно исследовать ядерные процессы, протекающие при облучении в реакторе или при бомбардировке ускоренными частицами. В этом случае необходимо использовать множество разнообразных приборов, в том числе очень специализированных осуществление ряда методик и отдельных операций требует большого мастерства и изобретательности. Большинство радиохимических лабораторий занимает в этом смысле промежуточное положение. Даже в том случае, когда проводятся только исследования с помощью радиоактивных индикаторов, применяют, как правило, несколько различных изотопов и соответственно несколько методов детектирования и разные способы приготовления образцов. Во многих случаях необходимо выделить один из радиоактивных изотопов, идентифицировать его, проконтролировать отсутствие примесей. Анализ -излучателей в большинстве лабораторий проводят с помощью пропорциональных или гейгеровских счетчиков с тонким окном для регистрации у-лучей используют сцинтилляционные счетчики с кристаллами. Для анализа а-излучателей или изотопов, испускающих -частицы малой энергии, применяют полупроводниковые детекторы и проточные пропорциональные счетчики (в последнем случае необходимо введение радиоактивного вещества внутрь счетчика). Наряду с этими приборами приходится использовать также усилители и пересчетные устройства при исследованиях часто применяют различные одно- или многоканальные амплитудные анализаторы, схемы совпадений и другие приборы. [c.382]


Смотреть страницы где упоминается термин Характеристики сцинтилляционных кристаллов: [c.152]   
Смотреть главы в:

Рентгеноструктурный анализ -> Характеристики сцинтилляционных кристаллов




ПОИСК







© 2024 chem21.info Реклама на сайте