Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время затухания

    Успешно применяются люминесцентные измерения при изучении быстрых реакций электронно-возбужденных молекул. В результате протекания таких реакций интенсивность флуоресценции (люминесценции) исходного соединения уменьшается, происходит тушение флуоресценции. Эти реакции тушения конкурируют с дезактивацией возбужденных молекул по другим механизмам. Так как время затухания флуоресценции порядка 10- с, то флуоресцентные методы обычно применяют для изучения кинетики быстрых реакций возбужденных молекул, протекающих за время 10 °— 10- с. [c.49]


    Эффективность и время затухания флуоресценции. В энергию люминесценции превращается не вся поглощенная энергия возбуждающего света. Эффективность процесса преобразования возбуждающей энергии в энергию люминесценции характеризуется выходом люминесценции. Энергетическим выходом люминесценции называется отношение энергии, испускаемой в виде люминесценции, к поглощенной энергии = /Л, где — энергетический выход Е — энергия люминесценции А — поглощенная энергия возбуждения. [c.58]

    Эффективность и время затухания фосфоресценции. Фосфоресценция— это излучательный переход с триплетного уровня Т на синглетный 5о- Эффективность фосфоресценции в первую очередь определяется концентрацией триплетных молекул. Фосфоресценция наблюдается в основном в твердой фазе, когда процессы диффузионного тушения триплета замедлены. Эффективность образования триплетов фт — это число триплетных молекул, образующихся на один поглощенный квант возбуждающего света. В отсутствие фотохимических реакций или же интеркомбинационной конверсии из высших синглетных состояний скорость заселения нижнего возбужденного синглетного состояния равна скорости поглощения /п, а скорость образования триплетных молекул /пфт- По методу стационарных концентраций определяют выход триплетов  [c.62]

    Измерив /ф в разные моменты времени t и построив зависимость 1п(/ф)(—1, можно по тангенсу угла наклона прямой получить величину — 1/т. Среднее время затухания флуоресценции т, опреде- [c.70]

    Учет аппаратной функции. Е сли время затухания люминесценции и время возбуждающей вспышки сравнимы между собой, наблюдаемая кинетика испускания отличается от характеристической функции f(t) —истинного закона затухания (при возбуждении бесконечно коротким импульсом света). Наблюдаемую интенсивность испускания f(f) в момент времени можно представить в виде интеграла dF (t) = Е (х) f t—x)dx—элементов интенсивности испускания частиц, возбужденных в момент х (где Е х) —интенсивность возбуждающего импульса света), тогда [c.108]

    Для экспоненциального затухания люминесценции истинное время затухания приближенно выражается уравнением [c.108]

    Кинетика флуоресценции в твердой фазе. В твердой фазе в отсутствие индуктивно-резонансного переноса энергии должен осуществляться статический механизм тушения флуоресценции. Могут существовать два типа молекул свободные молекулы, рядом с которыми при замораживании раствора нет ни одной молекулы тушителя и молекулы, имеющие соседа-тушителя, нефлуоресцирующие, мгновенно гаснущие . Первый тип молекул сохраняет неизменное время жизни. Поэтому при тушении флуоресценции в твердой фазе часто уменьшается квантовый выход флуоресценции, а время затухания остается неизменным. [c.98]


    Осциллографическая регистрация. Простейшей системой для наблюдения за кинетикой люминесценции является фотоумножитель с осциллографом, которая позволяет легко измерять времена затухания более 10- с. Для работы в наносекундном диапазоне приходится использовать специальные стробирующие осциллографы. При этом удается достичь разрешающей способности в несколько наносекунд. [c.103]

    Для определения формы импульса света E t) возбуждающей лампы [точнее аппаратной функции A t)] вместо образца помещают металлическую рассеивающую пластинку и проводят измерение обычным образом. Если время затухания флуоресценции соизмеримо со временем вспышки, для получения точных значений параметров флуоресценции необходимо знать аппаратную функцию вспышки в тех условиях, в которых регистрируется флуоресценция. Получение такой функции осложняется несколькими факторами, способными стать источниками ошибок 1) форма импульса возбуждающего света лампы зависит от длины волны, причем эта зависимость наиболее существенна для ламп, работающих при низких давлениях (менее 0,5 МПа и имеющих линейчатый спектр) длительность и форма вспышки, измеряемые на длине волны, соответствующей отдельной линии гораздо лучше, чем при регистрации в континууме 2) форма регистрируемого сигнала ФЭУ и положение максимума сигнала зависят от длины волны света, падающего на ФЭУ 3) слишком большая интенсивность света, падающего на ФЭУ, искажает сигнал 4) изменение геометрии [c.107]

    Эффективность и время затухания флуоресценции [c.141]

    Полагая d = 2-10 см и у = 5-10 см/сек, получим т 10 2 сек. Величину средней продолжительности жизнн колебательно возбужденной молекулы можно приблизительно оценить как время затухания классического вибратора [c.86]

    Исследование системы (7.21) показало, что в ней возможен выход на стационарный режим через колебательный при следующих значениях параметров = 0,2, А..1 = 0,0025, 2 = 15, Агзо = 100, кш = 2, Цз = 30, Ц4 = = 12, .15 = —10, а = 10, е = 0,00065. Время затухания осциляций определяется величиной Ё п может быть очень большим. При увеличении до [c.323]

    При анализе растворов высокомолекулярных соединений в гепловом движегти участвуют не только молекулы как целое, но и фрагменты молекул fSOj. Кроме поступательного и вращательного движений нужно учесть колебания и относительное вращение всех звеньев макромолекулы друг относительно друга. Появляющиеся дополнительные внутренние степени свободы являются причиной отличия поведения растворов высокомолекулярных соединений от обычных растворов. Описание явлений становится существенно более сложным вследствие того, что в больших молекулах устанавливаются связи между их частями. Образуются структуры, пронизанные молекулами растворителя. Такие растворы, являясь молекулярнымя, гораздо ближе по своим свойствам к коллоидным системам, чем к истинным растворам. Вместо одного характерного времени т в случае малых молекул для описания теплового движения макромолекул в растворах используют уже спектр времен п — характерное время, за которое фрагменты макромолекулы смещаются на расстояния порядка радиуса действия мел<молекулярных сил т-2 — время распространения конформационной перестройки по молекуле то — время вращательной корреляции (или характерное время затухания корреляционной функции) и т. д. [81]. Физический смысл величины то в том, что она является средним временем, за которое макромолекула поворачивается на угол 1 радиан за счет теплового движения. [c.44]

    Измерение фосфоресценции обычно проводят в твердой фазе при температуре жидкого азота, поскольку в жидких растворах фосфоресценция интенсивно тущится ничтожными количествами примесей. Для разделения обычной флуоресценции и фосфоресценции или замедленной флуоресценции необходимо периодически прерывать пучок возбуждающего света и регистрировать испускание только в течение темпового периода, т. е. когда короткоживу-щая флуоресценция оказывается полностью затухшей. В большинстве современных спектрофлуориметров это достигается тем, что при измерении спектров фосфоресценции вокруг образца вращается полый цилиндрический стакан, имеющий вырезы в боковой стенке. При вращении стакана вокруг его оси образец освещается возбуждающим светом, проходящим через вырезы, и долгоживущая люминесценция регистрируется через те же самые вырезы. Для измерения общей люминесценции вращающийся стакан надо удалить. Поскольку при использовании стакана с вырезами поглощается только некоторая доля возбуждающего света, то для определения полной скорости испускания долгоживущей люминесценции наблюдаемую интенсивность надо разделить на коэффициент фосфориметра, равный отношению светового периода к сумме времени светового и темпового периодов. Это справедливо, если время затухания долгоживущей люминесценции достаточно велико по сравнению со временем светового и темпового периодов, поскольку уменьшение интенсивности за воемя темпового периода будет [c.67]

    Другим методом измерения времени затухания флуоресценции является фазовый метод. Так как испускаемая флуоресценция запаздывает по сравнению с возбуждающим светом, то при возбуж-денпп флуоресценции пульсирующим светом возникает сдвиг фаз а, который измеряется экспериментально и из которого вычисляют время затухания флуоресценции, связанное с V соотношением tga = т2яv, где V —частота модуляции света. [c.71]


    Время затухания долгоживущей люминесценции можно определять на спектрофосфориметре по затуханию сигнала с фотоумножителя, если возбуждающий свет перекрывается быстрым механическим затвором. Для времен жизни порядка 5 с и более сигнал с фотоумножителя можно регистрировать при помощи быстрого самописца. При временах жизни между 0,1 и 5 с сигнал с фотоумножителя необходимо усиливать и подавать на осциллограф. [c.71]

    Фазово-модуляционные флуорометры. Общая схема устройства ([ азово-модуляционных флуорометров приведена на рис. 39. Для модуляции света с частотой 10 —10 Гц чаще всего используют ультразвуковые дифракционные решетки или ячейки Керра или Поккельса в сочетании с поляризаторами света. В качестве приемника света используют фотоумножители. Фазовое детектирова1ше и определение глубины модуляции производят при помощи специальной электронной аппаратуры (узкополосных усилителей, фазовых детекторов). Сдвиг фазы можно измерять с точностью до 0,1%, позволяя тем самым измерять времена затухания до 10 ° с. [c.113]


Смотреть страницы где упоминается термин Время затухания: [c.523]    [c.68]    [c.71]    [c.97]    [c.100]    [c.108]    [c.108]    [c.111]    [c.315]    [c.282]    [c.68]    [c.71]    [c.97]    [c.100]    [c.108]    [c.108]    [c.111]    [c.113]    [c.314]    [c.135]   
Физическая механика реальных кристаллов (1981) -- [ c.227 ]

Оптические спектры атомов (1963) -- [ c.391 ]




ПОИСК





Смотрите так же термины и статьи:

Затухание



© 2025 chem21.info Реклама на сайте