Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механика и механизм разрушения полимеров

    В предыдущих параграфах были подробно изложены более илп менее устоявшиеся подходы к изучению аморфных и кристаллических ориентированных полимеров в частности, были затронуты проблемы структурной механики, касающиеся механизмов разрушения полимеров в ориентированном состоянии. Однако исследования в этой области продолжают интенсивно развиваться, и новые экспериментальные данные заставляют изменить некоторые точки зрения. Поэтому представляется целесообразным дать краткий очерк состояния физики ориентированных полимеров к середине 1975 г. с указанием основных теоретических идей и практических тенденций. [c.216]


    Механика и механизм разрушения полимеров [c.168]

    Кроме подхода с точки зрения механики процесса разрушения (механического) существуют два физических подхода к теории прочности термодинамический и кинетический. Последние позволяют понять природу процессов разрушения полимеров и объяснить их механизмы, учитывая законы термодинамики и структуру материала. [c.287]

    Прочность и долговечность являются важнейшими свойствами полимерных материалов. Прочность реальных материалов не является материальной константой, так как зависит от многих факторов — времени или скорости действия нагрузки, температуры, вида напряженного состояния и др. Можно назвать две основные причины этого. Первая — существование во всех реальных материалах структурных дефектов и прежде всего микротрещин. Вторая — термофлуктуационный механизм разрыва химических связей. Соответственно этому возникли два подхода к прочности твердых тел механический и кинетический. Механический подход имеет свои достоинства и недостатки. Так, механика разрушения является основой инженерных методов расчета прочности деталей и конструкций, находящихся в сложнонапряженном состоянии. Математическая теория трещин, позволяющая рассчитывать перенапряжения вблизи микротрещины, является большим достижением механики разрушения. В то же время механический подход оставляет в стороне физические атомно-молекулярные механизмы разрушения и физическую кинетику разрушения в целом. Кинетический подход исходит из термофлуктуационного механизма разрушения, общего для всех твердых тел, в том числе и для полимеров. Суть этого механизма заключается в том, что химические связи в полимере разрываются в результате локальных тепловых флуктуаций, а приложенное напряжение увеличивает вероятность разрыва связей. [c.331]

    Разрушение полимеров в области высоких температур ф Механика разрушения эластомеров ф Механизм прочности и разрушения эластомеров ф Уравнение долговечности эластомеров ф Разрывное напряжение эластомеров [c.333]

    Механика разрушения является основой инженерных методов расчета прочности деталей и конструкций, находящихся в сложно-напряженном состоянии. Математическая теория трещин позволяет рассчитать напряжения вблизи микротрещин. В то же время механический подход оставляет в стороне физические атомно-молекулярные механизмы разрушения и физическую кинетику разрушения в целом. Кинетическая концепция исходит из термофлуктуационного механизма разрушения, общего для всех твердых тел. Суть механизма заключается в том, что химические и межмолекулярные связи в полимере разрываются в результате локальных тепловых флуктуаций, а приложенное напряжение увеличивает вероятность разрыва связей. Современная термофлуктуационная теория прочности полимеров объединяет оба подхода и вводит понятие о безопасном и критическом напряжении. [c.189]


    Несмотря на то что было выполнено значительное количество исследований по различным аспектам образования трещин серебра, не существует общего мнения относительно механизма начала их роста. До сих пор не существует приемлемой теоретической модели, с помощью которой можно было бы предсказать, образуются ли в данном полимере при данных условиях трещины серебра или нет. А если это произойдет, то каково влияние температуры и скорости деформирования на образование и распространение трещины серебра. Конечно, это связано с тем, что начало роста трещины серебра зависит одновременно от трех групп переменных, характеризующих соответственно макроскопическое состояние деформаций и напряжений, природу дефектов, создающих неоднородность в материале, и молекулярные свойства полимера при данных температурных условиях и химической среде. Существует пять различных по смыслу моделей процесса возникновения трещины серебра, в которых используются различные определяющие параметры. Эти модели основаны соответственно на разности напряжений, критической деформации, механике разрушения, ориентации молекул и их подвижности. Результаты основных исследований и критерии начала роста трещин серебра, предложенные на основе указанных выше моделей, перечислены в табл. 9.4. [c.367]

    Понятие о типах трещин и их роли в процессах разрушения является фундаментальным в механике разрушения. Однако классическая механика разрушения не объясняет временную зависимость прочности твердого тела в хрупком состоянии вследствие ограниченности механического подхода, не принимающего во внимание атомное строение полимера и термофлуктуационный механизм разрыва химических и других связей, т. е. физику разрушения. Только в случае проявления вязкоупругости (выше Тхр) классическая нелинейная механика разрушения описывает временные эффекты прочности. [c.104]

    Чтобы связать между собой атомно-молекулярные процессы и микроскопическое разрушение полимера, необходимо ввести некоторый локальный критерий, устанавливающий основную причину разрыва образца. Предложено два принципиально различных критерия разрушения. Первый основывается на представлении о том, что микротрещины не играют существенной роли и разрыв образца происходит тогда, когда в данном сечении число разорванных связей достигает некоторого критического значения (от 50 до 100% связей) [6.1]. Как следует из гл. 2, такого взгляда на механизм разрушения полимеров придерживались Журков и др. исследователи, и это в основном верно для разрушения твердого тела в высокопрочном состоянии в отсутствие микротрещин. Механизмы и теории разрушения в высокопрочном состоянии были обсуждены в гл. 3. Второй локальный критерий основан на представлении о том, что микротрещнны и их рост под нагрузкой играют определяющую роль в процессе разрушения. Механика разрушения (см. гл. 4) рассматривает теорию трещин и устанавливает критерии их роста, как правило, без учета термофлуктуационного механизма. [c.145]

    Немировский Ю. В., Резников Б. С, О механизме разрушения армированных оалок при изгибе. I. Разрушение от сдвига.— Механика полимеров, 1973, J s 4, с. 698—709. [c.157]

    Немировский Ю, В., Резников Б. С. О механизме разрушения армированных балок при изгибе. II. Хрупкое разрушение от нормальных на-ггряжений.— Механика полимеров, 1974, № 3, с. 462—463. [c.157]

    Дробно рассмотрены в гл. 8 (разд. 8.2.3). При этом остался открытым вопрос о механизме распространения усталостной трещины. Всестороннее освещение данного вопроса содержится в книге Херцберга Механика деформирования и разрушения промышленных материалов [3]. В данной работе или в обзорных статьях Плюмбриджа [217], а также Мэнсона и Херцберга [218] можно найти детальное описание различных стадий роста усталостной трещины, особенностей усталостного разрушения поверхностей, различных теоретических способов вывода уравнений для скорости роста трещины и кривых a—N для множества однородных и наполненных полимеров. Для металлов эти вопросы рассмотрены в работах [3, 217, 218]. Здесь будут приведены лишь некоторые последние результаты, непосредственно связанные с цепной природой макромолекул [173, 178, 191, 215—220]. [c.411]

    Как отмечает Берри, исследования прочности полимеров развиваются в двух направлениях. Первое относится к механике разрушения и к энергетическому подходу исходя из работ Гриффита и модели упругого твердого тела с микротрещиной, т. е. рассматриваются макроэффекты разрушения. Второе направление относится к физике (кинетике) разрушения и рассматривает молекулярноатомные механизмы и микромеханику разрушения. На Западе предпочитают первый подход (Гриффита), в СССР — второй (Журкова). Рассмотрим вначале результаты первого подхода к эластомерам. В этих опытах исследования механики разрушения проводились на образцах эластомеров и резин с искусственными надрезами. Методика испытания образцов с надрезом получила название испытания на раздир, который широко изучался в работах Ривлина и Томаса [12,1], Томаса [12.2] и других исследователей [12.3 12.4 82]. В процессе испытаний на раздир определялась энергия разрушения, которая зависела от заданной скорости движения зажимов. Энергия раздира включает свободную энергию образования новых поверхностей и механические потери, причем механические потери столь велики, что превышают свободную поверхностную энергию на много порядков. Эластомер считается тем прочней, чем большие затраты работы внешних сил требуются на раздир. [c.334]


    Сознательный, т. е. научно обоснованный синтез прочности или, вернее, носителя прочности реального твердого тела — проблема новых рациональных строительных и конструкционных материалов в современной технике. Она прежде всего и определяет актуальность физико-химической механики, ее выдающееся прикладное значение. Ученые физнко-химнки до последнего времени обычно относились к этой важной проблеме пренебрежительно, считая, что ее разработка — дело технологов и может проводиться эмпирически, без участия физико-химической науки. Со своей стороны, технологи, оторванные от исследователей — механиков и физико-химиков, успешно решали лишь отдельные узкие вопросы, обращаясь к физико-химии только для того, чтобы использовать новые методы измерения. Таким образом, основные задачи не были даже правильно поставлены, не было физико-химических представлений о существе процессов деформирования и разрушения, с одной стороны, и структурообразования — с другой. Даже не выдвигалась проблема установления общих закономерностей в этой важнейшей области науки и практики. Отсутствие современных физико-химических представлений о существе и механизме процессов приводило к техническому формализму в его худшем виде творческое научное исследование подменялось эмпирическими рецептурными сведениями на основе давно устаревших взглядов. Если в области металлов и новых сплавов, а также полимеров и пластиков здесь уже довольно много сделано, то основные проблемы неметалличргких мятрриялов на основе ионных кристаллов (цементы и бетоны, керамика) до последнего времени оставались нерешенными. [c.209]

    Исследования прочности полимеров развиваются в двух направлениях. Первое относится к механике разрушения и использует энергетический подход, идущий от работ Гриффита. Второе относится к физике разрушения и рассматривает молекулярноатомные механизмы и микромеханику разрушения. Рассмотрим сначала некоторые результаты, полученные при первом подходе, учитывая, что состояние вопроса подробно рассмотрено в монографии 5.7]. [c.220]

    В работах Вильямса, Маршалла и др. [169, 173, 174] с помощью методов механики разрушения было показано,, что скорость роста микротрещии в стеклообразных полимерах определяется, в частности, особенностями вязкого течения жидкости через пористую структуру микротрещины к ее вершине. Посколь ку развитие деформации ПЭТФ в жидкой адсорбционно-активной среде обусловлено возникновением и ростом микротрещин, скорость проникновения жидкости к ее вершине может оказать решающее влияние на механическое поведение полимера в целом. Другими словами, механизм деформации, а следовательно, и механические свойства полимера в этих условиях определяются соотношением скоростей деформации и вязкого течения жидкости к вершине растущей микротрещины. Это соотношение [c.119]

    Механизм появления остаточных напряжений в изделиях из гомогенных полимерных материалов. Остаточными напряжениями называются самоуравновешепные в объеме тела напряжения, существующие в изделиях при отсутствии внешних воздействий. Возникновение остаточных напряжений в ненагружен-ных изделиях характерно для процессов изготовления изделий из полимеров методом химического формования, поскольку процесс полимеризации (отверждения) происходит с разной степенью завершенности и сопровождается объемной усадкой, изменением механических свойств и т. д. В ряде случаев напряжения в изделии столь велики, что существенно влияют на поведение конструкции под нагрузкой и даже приводят к ее преждевременному разрушению, например при механической обработке заготовок или полуфабрикатов. Такая ситуация является довольно типичной в технологии переработки полимеров, так как изделия из полимерных материалов изготавливают при температуре более высокой, чем температуры эксплуатации, и при охлаждении неоднородность температурного поля обусловливает возникновение неоднородных полей напряжений и деформаций, которые замораживаются при переходе через температуры стеклования или кристаллизации из-за резко возрастающих времен релаксации и перехода материала в состояние, которое, с точки зрения механики, может быть названо упругим (особенно при малых деформациях). [c.80]


Библиография для Механика и механизм разрушения полимеров: [c.158]   
Смотреть главы в:

Высокомолекулярные соединения -> Механика и механизм разрушения полимеров




ПОИСК





Смотрите так же термины и статьи:

Механика

Механика механика

Механика разрушения полимеров

Разрушение механика



© 2025 chem21.info Реклама на сайте