Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разрушение эластомеров

    При изучении механизма разрушения эластомеров важно всегда помнить, что разрушение их происходит в ориентированном состоянии, когда удлинение при разрыве достигает сотен процентов. К моменту разрыва это уже не тот полимер, который мы взяли в исходном состоянии, поскольку надмолекулярная структура его изменилась в процессе деформации. [c.199]

Рис. 12.5. Зависимость энергии активации процесса разрушения эластомера от растягивающего напряжения Рис. 12.5. Зависимость <a href="/info/307561">энергии активации процесса разрушения</a> эластомера от растягивающего напряжения

    Кроме того, разрушение эластомеров при многократных деформациях ускоряется механически активированными химическими процессами деструкции полимерных цепей. [c.329]

    Разрушение полимеров в области высоких температур ф Механика разрушения эластомеров ф Механизм прочности и разрушения эластомеров ф Уравнение долговечности эластомеров ф Разрывное напряжение эластомеров [c.333]

    Механика разрушения эластомеров [c.334]

    Механизм прочности и разрушения эластомеров [c.335]

    Длительный процесс разрушения эластомера характеризуется двумя стадиями — медленной и быстрой. Медленная стадия образует на поверхности разрыва шероховатую зону, а быстрая — зеркальную. Чем меньше напряжение, тем длительнее процесс разрушения и тем яснее выражена шероховатая зона (при хрупком разрыве, наоборот, медленная стадия дает зеркальную, а быстрая — шероховатую зону). Первая стадия разрыва начинается с образования очага разрушения, из которого растет надрыв , являющийся аналогом трещины в хрупких материалах. Надрывы возникают под действием напряжений в наиболее слабых местах, причем очаги разрушения появляются как внутри материала, так и на поверхности образца, но среди них имеется наиболее опасный. Поэтому прочность эластомеров и резин определяется вероятностью образования наиболее опасного надрыва, аналогично тому, как прочность хрупкого материала определяется наиболее опасной трещиной. Надрывы растут в направлении, поперечном растягивающим усилиям, аналогично трещинам в хрупком телах. [c.336]

    Отсюда следует, что кинетика процесса разрушения эластомера определяется главным образом не разрывом химических связей, происходящим на последнем этапе микрорасслоения, а процессами вязкоупругости в местах концентрации напряжения (в очагах разрушения). Таким образом, вклад релаксационных процессов в кинетику процесса разрушения является определяющим в отличие от хрупкого разрушения, где основной вклад в кинетику разрушения дают термофлуктуационные разрывы химических связей полимерных цепей. [c.344]

    В своем сообщении о производстве этилен-пропиленового сополимера С-23 фирма опубликовала также данные о его механических свойствах. Отсутствие двойных связей в молекуле обусловливает чрезвычайно высокую стойкость к нагреву, действию кислорода, озона и других факторов, вызывающих старение и разрушение эластомеров. Стойкость к износу также достаточно высока. С другой стороны, насыщенный характер этого эластомера исключает возможность вулканизации с применением обычных систем сера — ускоритель в этом случае необходимы другие методы структурирования эластомера, например, при помощи органических перекисей. [c.205]


    Разрушение эластомеров под влиянием механических сил происходит в результате локального прекращения взаимодействия между атомами и молекулами, приводящего к разрыву, растрескиванию, раздиру и другим явлениям. Процесс ускоряется содержащимися в воздухе кислородом, озоном, диоксидом азота, влагой. [c.111]

    Такие эксперименты проводились неоднократно, что позволило Гулю уже в 1952 г. [8, с. 145—148 140, с. 953] иллюстрировать положения термофлуктуационной концепции на примере разрушения эластомеров, а позже на многочисленных примерах исследования разрушения силикатных стекол [141, с. 46], вулканизатов [142, с. 267 494, с. 229 295, с. 1364 63, с. 111] и других материалов. [c.225]

    Эта специфика разрушения полимерных тел определяется их способностью развивать высокоэластическую или вынужденно-эластическую деформацию. В зависимости от гибкости цепей макромолекул, степени их ориентации, температуры и скорости нагружения и других факторов эти особенности разрушения полимеров могут реализоваться более или менее полно. Наиболее полно они реализуются при разрушении эластомеров. Поэтому одни из первых работ, посвященных кинетике разрушения полимерных тел, были проведены на эластомерах [294, с. 4 295, с, 1364]. [c.277]

    Анализ процесса разрушения эластомеров приводит к заключению о том, что наиболее прочным оказывается материал по крайней мере с двумя типами поперечных связей. Один тип — лабильные связи, сравнительно легко разрушающиеся под нагрузкой (разрушение этого типа связей сопровождается рассасыванием пиков перенапряжений). Другой тип — прочные связи, по которым распределяется основная доля деформирующей нагрузки. [c.298]

    Интенсивное молекулярное движение, типичное для высокоэластического состояния, приводит к рассеянию упругой энергии из мест с высокой концентрацией напряжений. Видимо, именно с этим связана та важная роль, которую играют релаксационные процессы в разрушении эластомеров. [c.305]

    Как будет показано далее, Х-процессы релаксации ответственны за механизм разрушения эластомеров. В полярных полимерах природа физических узлов молекулярной сетки может быть иной. Например, в бутадиен-нитрильных эластомерах между и ё-процессами обнаруживается я-процесс релаксаций (см. рис. 7.2) [7.1], связанный с распадом и рекомбинацией локальных физических поперечных связей, обусловленных ди-поль-дипольным взаимодействием между полимерными цепями N N . Температура перехода этого процесса Гп=90°С, энергия активации 90 кДж/моль, 5г=10 о с. [c.201]

    Основные данные о разрушении эластомеров были получены нри длительных испытаниях несшитых и сшитых эластомеров нри растяжении в статическом и циклическом режимах [7.47, [c.221]

    Для длительного процесса разрушения эластомера характерны две стадии — медленная и быстрая. Медленной стадии на поверхности разрыва отвечает шероховатая зона, а быстрой — зеркальная (при хрупком разрыве, наоборот, медленная стадия дает зеркальную, а быстрая — шероховатую зону). На рис. 7.12 и 7.13 приведены фотографии для двух случаев когда очаги разрушения возникли на поверхности образца и в объеме образца. Чем меньше напряжение, тем длительнее процесс разрушения и тем яснее выражена шероховатая зона. Первая стадия разрыва начинается с образования очага разрушения, из кото- [c.221]

    В эластомере выше Тс действуют два основных релаксационных механизма. Один из них, а-процесс (см. рис. 7.2), связан с молекулярной подвижностью свободных сегментов и цепей, не входящих в микроблоки надмолекулярных структур (физические узлы). Он ответственен за релаксационные процессы в переходной области от стеклообразного к высокоэластическому состоянию и за быструю высокоэластическую деформацию выше температуры стеклования. Другой механизм относится к Я-про-цессам (см. рис. 7.2), наблюдаемым в области высокоэластического плато и ответственным за медленную высокоэластическую деформацию. Процессы А-релаксации возникают благодаря существованию в полимере различных типов микроблоков (упорядоченных микрообластей) термофлуктуационной природы. Эти процессы характеризуются различными временами релаксации и одной и той же энергией активации. Они играют основную роль в разрушении эластомеров. [c.228]

    Отсюда следует, что кинетика процесса разрушения эластомера определяется главным образом не разрывом поперечных химических связей, происходящим на последнем этапе микрорасслоения, а вязкоупругими процессами в местах концентра- [c.230]

    Физика прочности — быстро развивающаяся область науки. Каждые 10 лет происходит ломка или существенные изменения старых представлений и быстрое накопление новых фактов, имеющих принципиальное значение. Автор настоящей книги уже написал две монографии по физике прочности. Первая издана в 964 г. " В ней рассмотрена термофлуктуационная теория прочности применительно к полимерам, указаны границы применимости уравнения долговечности (безопасное и критическое напряжения), рассмотрен механизм разрушения эластомеров. Через 10 лет, в 1974 г., автором опубликована вторая монография , посвященная в основном неорганическим стеклам и стекловолокнам. Б 1гей впервые в советской литературе рассмотрены проблемы теоретической прочности неорганических стекол п органических полимеров. При этом было показано, что теория и критерий Гриффита, вопреки общепринятому, ио ошибочному мнению, является не критерием разрушения, а эквивалентной термофлуктуационной теории формой описания безопасного напряжения впервые были приведены данные о дискретном спектре прочности неорганических стекол и стекловолокон, предложена фононная теория разрушения бездефектных твердых тел. [c.5]


    Разрушение эластомеров выше [c.239]

    Долговечность полимеров выше Тс. определяется Х-процесса-ми релаксации, ответственными за медленные физические процессы релаксации в эластомерах и вязкое течение. Энергия активации всех процессов вязкоупругости (включая вязкое течение) и разрушения эластомеров одна и та же. Для полярных эластомеров ниже температуры Тя долговечность и вязкость контролируются я-релаксационным процессом (распад дипольных узлов), а выше Тп — по-прежнему А,-процессами релаксации. [c.242]

    Еще более сложной оказывается зависимость предельной величины напряжения при разрушении эластомера от концентрации узлов сетки. [c.221]

    Прочность является весьма сложной функцией упругих и релаксационных свойств полимерной системы [2, 88, 92, 93]. Заметим, что сами эти параметры непрерывно меняются в процессе деформирования, поскольку при этом непрерывно меняется структура деформируемого полимера. Концентрация узлов сетки в значительной мере определяет как упругие, так и релаксационные свойства эластомеров, их способность к структурным перестройкам при деформировании, и в конечном счете прочностные свойства эластомеров. Хотя полная количественная теория процесса деформирования и разрушения эластомеров пока еще не создана, качественная картина явления достаточно ясна, чтобы представить влияние рассмотренных выше факторов на процесс разрушения эластомера и его предельные прочностные характеристики. Кратко рассмотрим этот вопрос. [c.221]

    Правильная интерпретация явления усталости макромолекулярных материалов создает предпосылки для предотвращения разрушения эластомеров при их длительном постоянном нагружении или при разнообразных деформациях. Для этого необходимы, с одной стороны, умеренный механический режим, который уменьшал бы число образующихся свободных макрорадикалов, а с другой стороны, введение соответствующего количества ингибиторов, которые стабилизировали бы их в момент появления. [c.190]

    Наряду с процессом разрушения эластомеров вследствие утомления было проведено интересное исследование явления [c.193]

    Согласно теории Буше—Халпина [69], разрушение эластомеров определяется ограниченной вязкоупругой растяжимостью каучукоподобных нитей. Авторы данной концепции предполагают, что большая часть волокон на вершине растущей трещины натянута до своего критического удлинения Кс,- Образец разрушается при большей деформации Хь, когда <7 волокон разорвутся за время Величины кь и Кс связаны через ползучесть материала и коэффициент концентрации напряжений. Предложенная теория позволяет рассчитать удлинение при разрыве кь, если известна ползучесть. При этом не учитывается зависимость концентрации напряжения от длины растущей трещины или уменьшения долговечности одного волокна в процессе ползучести образца. Предполагается, что все волокна придется вытянуть от практически нулевого удлинения до Кс-В первую очередь это удлинение будет влиять на численные значения д, которые можно рассчитать путем построения экспериментальных поверхностей ослабления материала. Группа из д волокон при статистическом развитии событий, когда разрушение одного из них может повлечь за собой полное разрушение последующего, определяется средней долговечностью < ь>, равной и распределением Пуассона для (ь.  [c.91]

    Роль вязкоупругих процессов в разрушении эластомеров следует из независимого цикла работ Томаса, Лейка, Линдлея, Маллин-за, Джента, Эндрюса, Смита и других английских ученых [12.1— 12.5 82]. [c.338]

    Бикки [12.14] и Хэлпин [12.15] в своих работах предлагают молекулярные теории разрушения эластомеров с учетом дефектов и неоднородностей материала. В результате предложены уравнения, в частности сложный степенной закон, учитывающий временную зависимость прочности. Несмотря на интересные результаты, полученные Бикки и Хэлпином, их уравнения сложны и не поддаются легкой физической трактовке (см. [12.4, с. 196]). Поэтому обратимся к экспериментальным результатам по исследованию временной и температурной зависимостей прочности эластомеров. [c.338]

    Релаксационные процессы в полимерах определяют их вязко-упругие свойства и влияют на прочностные свойства этих материалов. Влияние релаксационных процессов на разрушение полимеров в высокоэластическом состоянии более существенно, чем в твердом [63]. В связи с этим понять природу процессов разрушения эластомеров и физический смысл наблюдаемых закономерностей можно на пути выяснения прежде всего фундаментального вопроса о взаимосвязи релаксационных процессов с процессом разрушения. Решение этого вопроса было осуществлено в работах [12.17 12.19], где проведены широкие исследования температурной зависимости комплекса характеристик релаксации напряжения, вязкости, процессов разрушения (долговечности и разрывного напряжения). Для исследований были выбраны несшитые и сшитые неполярные эластомеры бутадиен-стирольный СКС-30 (Гс = —58° С) и бутадиен-метилстирольный СКМС-10 (Гс=—72°С), а также полярные бутадиен-нитрильные эластомеры. Условия опытов охватывали широкий диапазон напряжений и деформаций растяжения и сдвига (несколько порядков величины). Исследования физических свойств проводились для каждого эластомера на образцах, полученных при одних и тех же технических режимах приготовления образцов (переработка и вулканизация). [c.341]

    НО достижимую прочность. Прн разрушении эластомеров, кристаллизующихся при растяжении, определенный вкл 1Д вносит и релаксацл-онный механизм деформировалия, характерный для высокоэластиче-скош разрушения Повышение прочности кристаллизующихся полимеров связано как с увеличением числа цепей, проходящих через зону разрыва (т. с. повышение степени [c.335]

    На рис. И 1.12 показан рост числа трещ,ин, определенный описанным методом. На рис. 111.13 приведены кадры киносъемки, на которых видно изменение поверхности деформированного каучука при экспозиции в озоне. Подробное описание закономерностей, определяющих разрушение эластомеров в агрессивных средах, имеется в работе [13]. [c.166]

    В рассматриваемом случае отождествляются релаксационные характеристики процессов перегруппировки элементов структуры, сопровождающие развитие обратимой деформации, и проскальзывание макромолекул или надмолекулярных образований в процессе разрушения эластомера. С. Н. Журков и В. Е. Корсуков [572, с. 2071—2080] показали, что прочность и долговечность сильно ориентированных полимерных тел определяются закономерностями кинетики накопления разрывов химических связей. Получить такой результат, экспериментируя с эластомерами или [c.279]

    Было установлено, что для некоторых каучуков энергия активации процесса разрушения совпадает с энергией активации вязкого течения. Это наводит на мысль, что кинетику процесса разрушения эластомеров определяют в основном межмолекулярные связи. Предположение о важной роли межмолекулярного взаимодействия в процессе разрушения было впервые выдвинуто Гулем [3, 23, 24], который считает, что нагружение полимера в первую очередь вызывает разрыв межмолекулярных связей, и лишь после этого начинает расти нагрузка на химические связи. [c.302]

    Чем выше температура, тем отчетливее проявляются в полимерах релаксационные процессы. Поэтому интересно выяснить роль релаксацпоппых явлений в высокоэластическом состоянии полимера, в котором релаксационные свойства определяют многие физические процессы. Эластомеры — класс полимеров, находящихся в высокоэластическом состоянии в области температур, характерной для земных условий (от —60 до +50 °С), т. е. для естественных условий эксплуатации полимеров. Поэтому знание природы процессов разрушения эластомеров имеет и непосредственно практическую значимость. [c.219]

Рис. 7.15. Зависимость энергии разрушения эластомера от скорости роста дефекта (надрыва, трещины) по Кнауссу Рис. 7.15. <a href="/info/362259">Зависимость энергии</a> разрушения эластомера от <a href="/info/768483">скорости роста дефекта</a> (надрыва, трещины) по Кнауссу
    Установлено, что быстрый разрыв происходит без образования надрывов в результате прорастания трещин разрушения, а медленный — путем образования и прорастания надрывов. В первом случае поверхность разрыва гладкая, во втором — шероховатая. На первой стадии разрушения растут дефекты в виде надрывов, дающих шероховатую зону поверхности разрушения, на второй — дефекты в виде трещин, дающие гладкую зону. Значительно позже к тем же результатам пришел Кнаусс. Он приводит интересную диаграмму (рис. 7.15), демонстрирующую переход от одного механизма разрыва к другому. При уменьшении скорости растяжения трещина трансформируется в надрыв. В соответствии с этими данными разрушение эластомеров происходит вследствие роста дефектов двух видов надрывов и трещин, вероятность образования которых различна и зависит от условия опыта. Механизм разрушения при прорастании трещин в эластомере аналогичен таковому при разрушении хрупких тел (непосредственный разрыв связей), чем и оправдывается термин трещина для высокоэластичного материала. [c.223]

    В отличие от теорий, в которых дефектность материала не учитывалась, Бикки [7.102] и Хэлнии [7.103, 7Л04], предложили молекулярные теории разрушения эластомеров с учетом дефектов и неоднородностей материала. В результате были получены уравнения, описывающие временную зависимость прочности, в частности, сложный степенной закон. Однако существенным недостатком подхода Бикки и Хэлпнна является то, что, признавая существенную роль вязкости, они в своих уравнениях пе учитывают в явном виде вклад гистерезисных потерь. Кроме того, их уравнения сложны и не поддаются простой физической трактовке [7.89, с. 196—203]. Поэтому обратимся к экспериментальным результатам по исследованию временной и температурной зависимости прочности эластомеров. Уже первые исследования [7.98, 7.105] выявили значительное влияние временных эффектов иа прочность эластомеров. Для эластомеров между прочностью и скоростью деформации е наблюдается линейная зависимость характерная для релаксационных процессов  [c.224]


Библиография для Разрушение эластомеров: [c.189]   
Смотреть страницы где упоминается термин Разрушение эластомеров: [c.215]    [c.333]    [c.337]    [c.126]    [c.223]    [c.228]    [c.240]    [c.221]   
Прочность и механика разрушения полимеров (1984) -- [ c.219 , c.235 , c.239 , c.242 ]

Полимерные смеси и композиты (1979) -- [ c.46 , c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимосвязь процессов вязкого течения и разрушения при резании эластомеров

Вязкоупругое разрушение усиленных эластомеров

Кинетика разрушения эластомеров

Механизм раздира и истирания наполненных эластомеров Раздир, разрыв и усталостное разрушение

Механизм разрушения эластомеров

РАЗРУШЕНИЕ ЭЛАСТОМЕРОВ В УСЛОВИЯХ КОНЦЕНТРАЦИИ НАПРЯЖЕНИИ

РАЗРУШЕНИЕ ЭЛАСТОМЕРОВ ПРИ РАСТЯЖЕНИИ В ВЫСОКОЭЛАСТИЧЕСКОМ СОСТОЯНИИ

Разрушение застеклованных эластомеров

Разрушение усиленных эластомеров

Эластомеры

Эластомеры вязкоупругое разрушение

Эластомеры разрушение при растяжении



© 2025 chem21.info Реклама на сайте