Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамическая теория прочност

    Термодинамическая теория прочности. М. Рейнер................4O5 [c.5]

    ТЕРМОДИНАМИЧЕСКАЯ ТЕОРИЯ ПРОЧНОСТИ [c.405]

    Кроме подхода с точки зрения механики процесса разрушения (механического) существуют два физических подхода к теории прочности термодинамический и кинетический. Последние позволяют понять природу процессов разрушения полимеров и объяснить их механизмы, учитывая законы термодинамики и структуру материала. [c.287]


    Отправной точкой для развития термодинамического подхода к исследованию разрущения хрупких твердых тел послужили теория прочности Гриффита [11.12] и ряд ее модификаций на основе механики разрушения, подробный анализ которых содержится в монографиях [11.2 11.5 11.11 11.13]. [c.290]

    Принимают, что в процессе ползучести работа деформации не запасается в форме упругой потенциальной энергии, а рассеивается в виде тепла. Такая рассеянная работа растяжения не может привести к хрупкому разрушению материала или к его пластическому течению, даже если соответствующие пределы будут превзойдены. Был сделан вывод о том [339, с. 12], что динамическая теория прочности должна быть термодинамической теорией. Пусть ы) — работа растяжения, 0 — часть внутренней энергии, которая может быть превращена в работу, и О — связанная рассеянная энергия (вес на единицу объема). Тогда первый закон термодинамики принимает вид [c.258]

    В настоящее время относительно развитой является термодинамическая теория совместимости , а точнее говоря, теория взаимной растворимости полимеров. Коллоидная химия смесей полимеров практически только начинает складываться. Наибольший прогресс достигнут в области ударопрочных полимеров, для которых определена, правда в общих чертах, зависимость ударной прочности от размера частиц, от прочности связи его со стеклообразной матрицей и т. д. [c.11]

    Для всех этих случаев в главе рассмотрены физические теории прочности и долговечности полимеров и стекол, методы расчета предельно достижимой прочности полимеров, обсуждена связь термодинамических и тепловых свойств с прочностью с точки зрения проявления энгармонизма в твердых телах. В главе проанализированы различные точки зрения на природу разрушения полимеров и сделай вывод о том, что в твердых полимерах ведущим процессом разрушения является разрыв химических связей, а не преодоление межмолекулярных взаимодействий. Рассмотрен термофлуктуационный и фононный механизмы зарождения субмикротрещин и их роль в разрушении полимеров в высокопрочном состоянии. [c.58]

    В книге излагаются современная теория прочности полимеров и механизмы их разрушения в различных структурных и релаксационных состояниях с позиций термодинамической и кинетической теорий и микромеханики разрушения. Рассмотрено влияние различных факторов (температура, поверхностно-активные среды, проникающее излучение и молекулярная ориентация) на процессы разрушения. Отражены вопросы прогнозирования прочностных свойств полимерных материалов. [c.239]


    Рассмотрим теперь адсорбционное (в отсутствие коррозии или растворения) влияние среды и ПАВ на механические свойства компактного материала — моно- или поликристаллического либо аморфного твердого тела. Это явление было открыто П. А. Ребиндером на кристаллах кальцита (1928 г.) и получило название эффекта Ребиндера. Очень характерно его проявление на ряде пластичных металлов. Так, будучи весьма пластичными по своей природе, монокристаллы цинка под действием микронной ртутной пленки или же массивные цинковые пластины при нанесении капли жидкого галлия или ртути хрупко ломаются уже при очень малых нагрузках (рис. 6). По Ребиндеру, общее термодинамическое объяснение таких явлений состоит в резком понижении поверхностной энергии о и тем самым работы разрушения вследствие адсорбции из окружающей среды (или контакта с родственной жидкой фазой). Одной из наиболее универсальных и вместе с тем простых моделей, связывающих прочность материала Рс с величиной ст, служит схема Гриффитса, являющаяся по сути приложением теории зародышеобразования к решению вопроса об устойчивости трещины и устанавливающая пропорциональность Рс ст . [c.312]

    Любая законченная теория КР должна объяснять взаимосвязь таких трех факторов, как энергетические условия разрушения (это термодинамическая проблема, которая в итоге может быть решена на уровне квантовой механики, т. е. влияние среды на прочность связи), кинетика процесса разрушения и специфическое влияние металлургических и химических факторов. [c.388]

    Этот показатель увеличивается с ростом молекулярной массы. У различных полимеров в зависимости от термодинамической гибкости макромолекул степень свернутости цепей одинаковой длины может быть различной. По мере увеличения жесткости и прочности полимера свернутость цепи убывает. Как уже отмечалось, в реальных полимерах свободное движение звеньев существенно ограничено. Поэтому концы макромолекул зафиксированы в определенных точках, причем всегда Ь>0. В соответствии с кинетической теорией высокоэластической деформации, такие молекулы растягиваются по линии, соединяющей их концы (см. рис. 1.1). Это обстоятельство представляется чрезвычайно важным в проблеме прочности полимеров, у которых тепловые конформационные превращения фактически оказываются источником некоторых спонтанных силовых импульсов, статистически распределенных в объеме материала. Приближенно величина этих импульсов оценивается из [c.11]

    Установленное в нашей лаборатории дифференцирующее действие растворителя на силу кислот не могло быть объяснено имеющимися теориями кислот и оснований. Криоскопические исследования в инертном растворителе (бензоле) показали, что дифференцирующие растворители (ацетон и ацетонитрил) и спирты образуют с карбоновыми кислотами и фенолами продукты присоединения различного состава и прочности [1]. Однако строение и характер связи этих продуктов, естественно, не могли ыть определены криоскопическим или другим термодинамическим методом. Оставалось также неясным, образуются ли в чистых растворителях продукты присоединения такого же состава, как и в инертных растворителях. Кроме того, представляло интерес исследовать характер взаимодействия растворителя с анионами растворенных кислот. [c.122]

    Для платиновой группы металлов давно известно образование комплексных соединений со смешанной координационной сферой. Правда, в комплексах платиновой группы металлов прочность связи определяется в основном кинетическими факторами. Замена одного лиганда на другой здесь происходит медленно, причем термодинамические характеристики энергии связи часто не являются решающими. Известно, что для комплексов платиновой группы металлов образование изомеров представляет обычное явление, хотя из двух изомеров только 0(дин является термодинамически устойчивым. Для равновесных систем, наоборот, термодинамический фа ктор оказывается решающим. Поэтому конкурирующее равновесие типа (3) считалось общей закономерностью. Тем не менее координационная теория не указывает на какие-либо препятствия при образовании соединений со смешанной координационной сферой. Так, насыщенный в координационном отношении комплекс МХ может реагировать с новым лигандом ступенчато  [c.334]

    Предпринята попытка склеивания полиамидов клеями на основе ЭО. При этом исходили из основных положений диффузионной теории адгезии, согласно которым для обеспечения высокой прочности связи необходимо соблюдение двух условий а) термодинамического, требующего взаимной растворимости адгезива и субстрата и их совместимости б) кинетического, достигаемого подвижностью макромолекул полимеров. [c.175]

    Отметим также работы (6392, 6447, 6448], в которых изложены соответственно вопросы извлечения технологической информации из термодинамического расчета (на примере гетерогенных реакций), термодинамики процессов крашения и некоторые аспекты теории керамического синтеза (применение термодинамики к выяснению прочности материала). [c.58]


    Несмотря на существенные ограничения [74], которые имеет теория Гриффита, она находит благодаря ряду рациональных положений применение и в настоящее время [75—77]. Френкель, Бартенев, Ребиндер, Баренблатт и многие другие исследователи рассматривали условия развития и смыкания трещин в твердых телах. Подход Гриффита был распространен Ирвиным и Оро-ваном на случай разрушения пластических материалов с учетом диссипации энергии на концах трещин за счет пластической деформации. Не рассматривая подробно эти работы, заметим только, что в подходе Гриффита и модификациях этого подхода заключается интересная возможность приложения энергетической концепции к адгезионным соединениям, поскольку адгезионная прочность непосредственно определяется уровнем поверхностной энергии. Этот подход, являющийся, по существу, развитием термодинамической концепции, начинает применяться в некоторых работах [78, 79]. Для адгезионной системы в уравнение (1.5) вводятся параметры, представляющие собой расстояния по обе стороны от границы раздела, на которые распространяется процесс диссипации энергии. Кроме того, необходимо учесть, что удельная работа деформации определяется не только поверхностной энергией, но и расстоянием от трещины до границы раздела [80]. [c.26]

    В этой связи актуальным в настоящее время является развитие количественных теорий разрушения, многослойных систем с градиентом свойств в зоне межфазной границы, характеризующихся различной фазовой и надмолекулярной организацией. Тогда проблема адгезионной прочности полимер — полимерных систем сведется к моделированию строения диффузионной зоны на основании данных о диаграммах фазового состояния, термодинамических параметров смешения и коэффициентов диффузии и определению — расчету прочностных свойств слабых слоев . Такой подход позволит проводить направленный поиск оптимальных адгезивов и субстратов, осуществлять планирование адгезионных исследований. [c.266]

    Начиная с главы Процессы разрушения , книга приобретает более специализированный характер. Так, А. Кобаяши и К. Саито исследуют явление разрушения при резании, М. Рейнер представляет термодинамическую теорию прочности, К. Сяо анализирует [c.9]

    Таким образом, как термодинамический, так и кинетический подходы к процессу разрушения и термофлуктуационная теория прочности хрупких твердых тел приводят к выводу о сушествова-нии безопасного напряжения, для расчета которого при одноосном растяжении предложены уравнения (11.42) и (11.43), а для сложнонапряженного состояния — уравнение (11.44), а также к диаграмме механизмов разрушения, показанной на рис. 11.11, где приводятся границы существования безопасных напряжений, термофлуктуационного и атермического разрушения в зависимости от размеров начальных микротрещин в материале. На основании этих уравнений может быть определен критерий оценки безопасных микротрещин в хрупких твердых телах. Порог разрушения по Гриффиту аа ° соответствует безопасному напряженую оо, а не критическому (Тк, как это считалось до сих пор общепринятым. [c.314]

    Излагаются совр( меиная теория прочности полимеров и механизмы их разрушения в различных структурных и релаксационных состоянняк с позиций термодинамической и кинетической теорий и микромехаинкн разрушения. Рассмотрено влияние различных факторов на процессы разрушения по данным различных структурных методов рентгеновского, масс-спектрометрического, ИК-спектрометрии, пиролиза, релаксационной спектрометрии и др. Анализируется связь между мexaни мами разрушения и релаксационными явлениями. П])иводятся новые данные о дискретных спектрах прочности и долговечности полимеров. [c.2]

    Сопоставление термодинамического и кинетического подходов к процессам разрушения полимеров пока.зало, что для ПММА и капронового волокна критерий Гриффита оа соответствует Оо, а не (Тк- Отсюда следует, что Оа и теория Гриффита не имеют отношения к критерию разрушения и к критическому напряжению Юк. Критерий Гриффита скорее является критерием безопасности (как и безопасное напряжение Оо в термофлуктуационной теории прочности). Таким образом кинетический подход дает термофлуктуационный вклад тф в долговечность и определяет его границы (оо, Оф) При Т—>-0 напряжение Оф —Нсгк. Термодинамический подход дает оценку безопасного напряжения в виде порогового напряжения Гриффита Оо, которое характеризует равновесное состояние (когда процессы разрыва и рекомбинации химических связей равновероятны). Механический подход дает атермический вклад Тк в долговечность т = тф-ьтк и методы расчета концентрации напряжения (или локальных напряжений) в вершинах микротрещин, ответственных за разрушение. При переходе к бездефектным (высокопрочным) материалам, имеющим микронеоднородную Структуру и перенапряженные цепи, уравнепнс долговечности переходит в известное уравнение Журкова. [c.191]

    Как и в случае ненаполненных вулканизатов, прочность при растяжении усиленных материалов зависит от скорости деформации и температуры и подчиняется принципу температурно-вре менной суперпозиции. На рис. 10.22 показана зависимость прочности при растяжении от времени до разрушения для непаполпеп-ных вулканизатов и нескольких усиленных композиций. Если обе фазы находятся в стеклообразном состоянии (крайние левые участки кривых), то усиления образцов пе происходит. В области же высокоэластичности прочность может быть увеличена в 10 раз при введении 25% полистирола. Возвращаясь к рис. 10.21, мы видим, что возрастание прочности при растяжении почти точно соответствует увеличению модуля в области плато высокоэластичности для соответствующих композиций, что подтверждает изложенную выше термодинамическую теорию, так как может быть получено аналогичное отношение А До. Используя теорию Смита об огибающей разрывов [843], Мортон и др. нашли, что кривые для нескольких вулканизатов налагаются (рис. 10.23). Из огибающих разрывов, изображенных на рис. 10.23, нельзя сделать вывода об усилении, как из рис. 10.22. Мортон и др. обнаружили также, что более мелкий наполнитель обеспечивает большую прочность при растяжении при любых температуре и скорости деформации. Основной вывод, сделанный Мортоном и др., состоит в том, что действие усиливающих наполнителей сводится к увеличению вязкости матрицы (см. также гл. 12). [c.275]

    Количественная теория прочности пластмасс в настоящее время еще обсуждается [1, 2]. Критерий разрушения Гриффита подвергается некоторой критике в частности на том основании, что поверхностную энергию твердых тел, в особенности полимеров, практически невозможно измерить однозначно. Кроме того, термин поверхностная энергия для полимеров имеет иной смысл, чем для низкомолекулярных материалов, в которых разрушение связано лишь с отделением молекул друг от друга и с преодолением сил межмолекулярного взаимодействия. Предпринимались такн№ попытки связать прочность с таким термодинамическим параметром, как плотность когезионной энергии [3]. В термопластах разрушение охватывает как отделение молекул друг от друга, так и разрыв внутримолекулярных (хи.мичес-ких) связей. В сильно зашитых системах (реактопласты) разрушение происходит только через разрыв химических связей. [c.60]

    В книге не рассмотрены работы большой группы ученых — прочнистов , основанные на классическом учении о теории упругости. Автор думает, что теории прочности, основывающиеся на допущении малых деформаций и упругих констант, как бы они ни были модифицированы применительно к полимерным материалам, не могут правильно описать реальное поведение этих материалов под действием внешних нагрузок. Чтобы приблизиться к реальной картине работы внутренних связей в полимерах против действия внешних (поверхностных) сил, нужно было бы на основании подобных теорий создать механические модели термодинамических и химических процессов, протекающих в полимерах в нагруженном состоянии. [c.8]

    Слабое место теории Губера становится очевидным при рассмотрении явления ползучести металлического стержня. Если стержень из малоуглеродистой стали Иагружен при некоторой повышенной температуре, он будет непрерывно удлиняться с более или менее постоянной скоростью. В процессе ползучести работа деформации не запасается в форме упругой потенциальной энергии, а рассеивается в виде тепла. Такая рассеиваемая работа растяжения не может привести к хрупкому разрушению материала или к его пластическому течению, даже если соответствующие пределы будут превзойдёньь Отсюда ясно, что динамическая теория прочности-гюжет быть только термодинамической [c.406]

    Исследования М. Н. Блувштейна, М. Д. Щегловой и других показали, что предел прочности при сжатии огнеупорных материалов с повышением температуры изменялся по сложному за кону, а не прямолинейно, как следовало бы по термодинамической теории [4, 5]. [c.117]

    Образование контактов в коагуляционной структуре галлуазита происходит преимущественно по концам, обломам и граням. Анизометричность частиц облегчает образование прочных пространственных сеток. По местам наибольшей кривизны в соответствии с термодинамической теорией смачивающих пленок происходит наиболее эффективный прорыв гидратных оболочек, толщина их становится наименьшей, а прочность образовавшихся контактов наибольшей. [c.38]

    По адсорбционно-электрохимической теории, предложенной Г. В. Карпенко 120, 21], первичным актом воздействия коррозионной среды на циклически деформированный металл является адсорбционное воздействие, приводящее к термодинамически неиз бежному изменению прочности металла) которое в условиях [c.81]

    Остальные пять глав содержат теорию и экспериментальные данные для полимеров и полимерных материалов с микротрещинами, уже имеющимися или возникающими при нагружении. Проблема микротрещин и трещин важна по двум причинам 1) реальный процесс разрыва в подавляющем числе случаев идет путем роста микротрещин и трещин 2) реальные полимеры и полимерные конструкционные материалы имеют, как правило, различного рода дефекты структуры, в том числе и микротрещины. Поэтому естественно, что прежде всего (гл. 4) рассмотрены механика и термодинамика разрушения твердых тел с трещинами и соответственно изложены два подхода к поочно-сти механический и термодинамический. Дальше, в гл. 5, рассматриваются кинетический подход и экспериментальные данные физики прочности полимеров, существенный вклад в которую внесли научные школы акад. С. Н. Журкова и проф. В. А. Степанова. В гл. б описана теория разрушения полимеров в хрупком и квазихрупком состояниях, предложенная автором монографии и объединяющая три подхода к прочности кинетический, термодинамический и механический. [c.8]

    В главе обсуждены также методы расчета долговечности полимеров при различных временных режимах нагружения по данным долговечности, полученным в рел име o = oпst, т. е. по уравнениям долговечности, полученным из термофлуктуационной теории. Главным итогом этой главы является объединение в единую теорию трех подходов к прочности кинетического, механического и термодинамического. [c.191]

    Теория этих важных методов разработана мало. Обычное представление о подобных соединениях, как о ионных ассоциатах, является лишь упрощенной моделью. Такая схема дает возможность описать некоторые термодинамические характеристики реакции, влияние концентрации красителя, отмечает значение ра змера иона красителя 52]. Однако указанное представление не объясняет многих важных особенностей, например влияния pH, влияния концентрации электроотрицательного лиганда и др. Ионный ассо-циат представляет собой продукт простого сочетания двух ионов, спектр поглощения такого ассоциата в значительной степени аддитивен, а прочность определяется главным образом зарядом и радиусом ионов — компонентов. По спектрам поглощения рассматриваемая группа окрашенных соединений отвечает ионным ассоциатам. Однако многие другие свойства не определяются только зарядом и радиусом ионов компонентов. Например, выше отмечалось большое влияние гидролиза галогенидных комплексов. Между тем если принять за основу теорию ионных ассоциатов, названное влияние нельзя объяснить. Действительно, замена в ацидоком-плексе одного иона фтора на гидроксил-ион почти не изменяет размера, расположения в пространстве и эффективного заряда комплекса анион [BF4] в этом отношении практически не отличается от аниона [BF3 (0Н)] . Однако первый комплекс образует с основным красителем хорошо экстрагирующиеся соли, тогда как второй не реагирует. Аналогичные явления имеют место для сурьмы, тантала и др. Ряд важных вопросов, как выбор оптимального значения pH, выбор оптимальной концентрации электроотрицательного лиганда и многие другие, нельзя решить с помощью теории ассоциатов они пока решаются лишь эмпирически. [c.353]

    В развитии этой теории А.Б. Таубманом отмечается, что вследствие сольватации углеводородных цепей неполярной фазой, также из-за гидратации полярных групп эти молекулы ПАВ не могут приблизиться друг к другу и находятся как бы в газообразном состоянии. Таким образом, создается ли-нослой, объясняющий двухструктурное строение поверхностного слоя высококонцентрированных эмульсий. Роль бронирующего слоя играет эмульсия высокой дисперсности и прочности, превышающей прочность самих адсорбционных слоев ПАВ. Отмечается, что в некоторых случаях эти пленки обладают настолько прочной гелеобразной структурой, что могут быть механически извлечены с межфазной поверхности без нарушения их прочности. С позиций теории структурно-механического барьера в оптимальном случае возможно получение пленок, свойства которых будут близки к свойствам твердого тела, т.е. в принципе возможно создание полностью термодинамически устойчивой эмульсии, дисперсная фаза которой будет представлена в виде микрокорпускул. [c.54]

    Важное значение для теории строения имеет исследование проблемы молекулярной энергетики. К этому кругу вопросов относится определение зависимости тепловых эффектов реакций от структурных особенностей молекул и характера взаимного влияния атомов. Термические и фотохимические исследования прочности связей в органических молекулах должны дать ценные сведения об энергиях последовательного отрыва отдельных атомов и атомных групп. Спектроскопическое измерение энергетических уровней молекул необходимо для вычисления термодинамических функций химических соединений — свободной энергии, энтропии и дру1"их знание этих функций необходимо для расчетов химических равновесий и для решения других задач, в том числе практически важных. [c.65]

    Далее необходимо исследовать температурную зависимость прочности, предсказываемую уравнением (10.9). Экспериментальные наблюдения показывают, что / и, следовательно Е, уменьшаются с возрастанием температуры при постоянном времени измерения. Это связано с тем, что кинетические эффекты (см. теорию Халпина и Бики [354]) маскируют термодинамические эффекты. Имеются некоторые указания на то, что для случая равновесного набухания выполняется уравнение, аналогичное уравнению (10.9), в соответствии с которым набухание возрастает линейно с lgГ (Сперлинг, не опубликовано). [c.271]

    Далее, в одном из последних обзоров Изучение ионов в чистых и смешанных растворителях методом ЯМР , Дж. Ф. Хинтон и Е. С. Эмис [37 систематизировали имеющиеся в литературе до 1967 г. данные об эффекте несоответствия и снова рассмотрели его с позиции теории О. Я. Самойлова, сопоставляя энергетику ближних взаимодействий, связанную с расположением ближайших к центральному атому частиц в растворе комплекса (траис-п цисвлияние, сольватация), ответственную за кинетические свойства комплекса и полную энергию взаимодействия частиц в растворе, от которой зависят термодинамические свойства и на которые аранжировка частиц влияет слабо. Принципиально это рассмотрение не отличается от проведенного А. А. Гринбергом анализа константы нестойкости комплекса как частного от деления констант скоростей рекомбинации и диссоциации комплексного иона, сделанного им в статье К вопросу о соотношении между прочностью и реакционной способностью комплексных соединений [38]. [c.55]

    В подобных подходах не принимается во внимание ряд тонких термодинамических эффектов (см., например, [2,17]), однако в полуколичественном аспекте они, безусловно, полезны при исследовании общих закономерностей адгезии жидкостей. Учет всех или даже большинства термодинамических параметров при рассмотрении проблем адгезии в настоящее время весьма затруднен. Некоторые из них, подобные, скажем, развитости рельефа поверхности твердого субстрата, гистерезиса смачивания и др. [18], не имеют для мономерных адгезивов такого значения, как в случае адгезии вязких растворов или расплавов полимеров. Однако пренебрежение отдельными факторами заведомо обедняет анализ. Так, нельзя не учитывать скачкообразного изменения 0 [19] при структурировании мономерной капли в процессе склеивания. Важно также иметь в виду, что проявление мономерами поверхностной активности способно обусловить адсорбционное снижение прочности твердых тел по Ребиндеру. Наибольщее воздействие активные жидкости оказывают на упругодеформируемые субстраты, к числу которых принадлежит большинство полимеров, соединяемых мономерными адгезивами. В этом случае исходное уравнение (1) должно быть дополнено членом (х/У )созф (или k/R при ф = 0), где ф — угол наклона капли радиусом R на линии ее трехфазного контакта, а к — обусловленное дально-действующими поверхностными силами [3, с. 372] линейное натяжение [20], теория которого развита в [21] более общий подход [22, с. 92] основан на механике сплошных сред с учетом баланса количества и момента движения соответственно дву- и одномерного континуумов. [c.11]

    Хотя положения диффузионной теории адгезии представляются достаточно обоснованными, доказательства диффузии полимеров в полимерные подложки не всегда убедительны [22, 45, 46]. В частности, влияние условий формирования адгезионной системы па адгезионную прочность можно объяснить и реологическими факторами без привлечения представлений о диффузии [22, 46, 47]. В последние годы предпринимались попытки установить корреляцию между совместимостью и адгезионной прочностью. С этой целью рассчитывают параметр совместимости по значениям плотности энергии когезии, и корреляцию между совместимостью и адгезионной прочностью рассматривают как подтверждение справедливости диффузионной теорипи адгезии [42, 48, 49]. Однако эту корреляцию можно объяснить [25] и не прибегая к диффузионной теории. Дело в том, что для хорошего смачивания полимером подложки и возможно более быстрого растекания межфазная поверхностная энергия должна быть минимальной, а это возможно при условии близости молекулярной природы адгезива и подложки (напомним известное пра-впло Ребиндера межфазная энергия тем ниже, чем меньше различие в полярности). Таким образом, термодинамические усло- [c.21]

    Изучение теории пластифицирующего действия на основе растворимости развито смелыми попытками Бойера и его сотрудников установить соотношение свойств совместимости, эффективности и прочности. В статье, появившейся в 1949 г., Бойер [7] рассматривает совместимость в свете термодинамической трактовки Флори и Хагмиси, согласно которой чем меньше величина тем выше совместимость пластификатора. В статье Бойера подтверждена эта связь между эффективностью и величиной р. у пластификаторов чем выше величина р., тем эффективнее действие. [c.192]

    Как было отмечено [44], превращение струи в волокно при формовании волокон из расплава или раствора может рассматриваться с позиции принципа эквивалентности физической кинетики полимеров, который сводится к тому, что термодинамическое поведение системы растянутых гибкоцепных макромолекул эквивалентно поведению системы жесткоцепных макромолекул в отсутствие внешних полей. Не останавливаясь здесь на теоретических доказательствах этого принципа [44], остановимся на практических выводах из этой теории. Принцип термодинамической эквивалентности обосновывает второй путь решения проблемы упрочнения. Он сводится к созданию условий высокой ориентации макромолекул любой жесткости и обеспечению быстрой фиксации распрямленных и ориентированных макромолекул, например путем переохлаждения или кристаллизации, для предотвращения процессов разориентации и образования складчатых структур. Для реализации этого пути применяют особые условия формования. Процесс эффективной ориентации переносится со стадии вытяжки сформованного волокна на стадию выхода раствора или расплава из отверстий фильеры. С этой целью формование ведут при больших скоростях сдвига. Судя по литературным данным, таким способом удается получать по-лиолефиновые и полиамидные волокна с прочностью до 2,5—3,5 ГН/м . Правда, сведений о промышленном внедрении этого метода пока нет. [c.80]

    Прочность адгезионного соединения определяет основные механические свойства полимерных композиционных материалов. При оценке адгезионной прочности необходимо учитывать физические аспекты процессов развития и роста трещин, распределения напряжений и их релаксации и разрущения, наличие внутренних напряжений и пр. Эти вопросы, выходящие за рамки физико-химического рассмотрения, подробно освещены в работе [149]. Отметим лищь несоответствие термодинамически вычисленной работы адгезии и того же показателя, определяемого по механическому разрушению адгезионного соединения. Вопрос о соотношении между адгезией полимера к поверхности и адгезионной прочностью - один из основных в теории адгезии полимеров к твердым поверхностям. [c.72]

    Во всех этих работах мы встречаем подтверждение существования некоего оптимума прочности связи катализаторов с реактантами. Количественная связь такой оптимальной величины прочности промежуточных соединений с термодинамической характеристикой каталитической реакции была впервые выражена А. А. Баландиным в форме принципа энергетического соответствия мультиплетной теории катализа [1] [c.18]

    Очевидно, что теоретическое и экспериментальное исследование кинетических свойств полимеров представляет не меньший, если не больший интерес, чем исследование свойств термодинамических. В технических применениях полимерных материалов, в частности каучуков, мы имеем дело с поведением полимеров прп воздействиях, зависящих от времени. Такие свойства полимеров, как их прочность, тепло- и морозостойкость и т. д., определяются прежде всего кинетическими явлениями. Однако, несмотря на ряд прекрасных работ, посвященных физической кинетике полимеров (мы имеем в виду прежде всего работы Н. Н. Кобеко, А. II. Александрова и Ю. С. Л а-зуркина, Е. В. К увшинского, С. Н. Журкова, В. А. Каргина и Г. Л. Слонимского, см. главу 1), состояние теории в этой области очень далеко от удовлетворительного. Теория здесь не построена даже в том ограниченном смысле, is котором мы можем говорить [c.449]

    Наряду с этим при увлажнении затвердевшего гипса влага адсорбируется внутренними поверхностями микрощелей и микротрещин, и возникающее при этом расклинивающее действие водных пленок разъединяет отдельные элементы кристаллической структуры. При работе гипсовых изделий во влажных условиях начинают (по теории П. А. Ребиндера и Е. Е. Сегаловой) протекать процессы перекристаллизации, состоящие в растворении термодинамически неравновесных кристаллизационных контактов и росте свободных кристаллов двуводного гипса, что приводит к снижению прочности. В проточной воде затвердевший гипс разрушается особенно быстро. При последующей сушке прочность гипса снова возрастает. Защищенные от действия атмосферных осадков и сырости гипсовые изделия долговечны. [c.66]

    Количественное соотношение оптимальной прочности связи катализаторов с реагентами и термодинамической характеристики каталитической реакции было впервые сформулировано Баландиным в виде принципа энергетического соответствия мультиплетной теории катализа [385]  [c.221]


Смотреть страницы где упоминается термин Термодинамическая теория прочност: [c.631]    [c.6]    [c.15]    [c.6]    [c.270]   
Разрушение твердых полимеров (1971) -- [ c.405 ]




ПОИСК







© 2025 chem21.info Реклама на сайте