Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы исследования физические квантовой механики

    Обе книги могут быть полезными для преподавания предметов Математика и Физика , так как выделяют те разделы этих предметов, которые важны для химиков. Так, кроме дифференциального и интегрального исчисления химику, активно использующему физические методы в своей работе, необходимы разделы линейной алгебры, теории групп и интегральных преобразований. Для решения обратных задач методов особое значение имеют вычислительные методы. С точки зрения преподавания физики важно уделить внимание вращательному движению, магнитным явлениям и, конечно, квантовой механике, ее приближенным методам решения уравнения Шредингера, особенно методу теории возмущений. Некоторые задачи физического практикума также могут ориентироваться на дальнейшее использование в практике физических методов исследования в химии. [c.264]


    Теория химических взаимодействий подробно рассматривается в руководствах по квантовой химии, органической и неорганической химии, теории твердых тел. Она далека от совершенства, но, опираясь на химические и физические исследования молекул и методы квантовой механики, шаг за шагом постепенно вскрывает сложную картину тех процессов, которые протекают при образовании и разрушении молекул, а также при изменениях их состояния. [c.55]

    Характерной чертой современной физической химии являются гармоническое сочетание химических и физических методов исследования, широкое использование ею данных математики и квантовой механики. [c.6]

    Таким образом, наука о химической форме движения—химия вообще и органическая химия в особенности—не может быть сведена к квантовой механике. Основой изучения химической формы движения материи являются химические методы исследования ведущая роль в развитии химии принадлежит не физическим теориям, а теории химического строения. [c.32]

    В конце XIX и начале XX веков, уже после смерти Бутлерова, были достигнуты существенные успехи в исследовании строения атома, связанные с развитием ловых экспериментальных методов исследования и соответствующих теоретических представлений современной физики и физической химии. Эти успехи, позволившие создать теорию строения атома и развить теорию строения простейших молекул в физико-хими-ческом плане, связаны со спектроскопией, электронографией, атомной и молекулярной оптикой, квантовой механикой и другими разделами современной физики и физической химии. [c.10]

    Серьезные успехи были достигнуты в последние десятилетия в развитии и углублении ряда основных понятий теории химического строения. Эти успехи базировались на результатах экспериментальных исследований свойств микрочастиц (электронов, ядер, атомов, молекул, ионов) физическими методами, на развитии атомной и молекулярной спектроскопий, молекулярной оптики, квантовой механики, квантовой химии и других разделов современной физической химии и физики. [c.51]

    Последние два десятилетия ознаменовались большими успехами химии координационных соединений. В течение ряда лет после работ Альфреда Вернера развитие этого направления химической науки протекало сравнительно медленно затем интерес к химии координационных соединений постепенно начал все более возрастать, причем некоторые теоретические представления и методы исследования претерпели существенное изменение. Ранее основные усилия были направлены на увеличение числа полученных комплексных соединений и на изучение их строения и свойств главным образом химическими методами наряду с привлечением ограниченного числа физических методов, например измерения электропроводности водных растворов. Однако в последнее время фундаментальные исследования в области неорганической химии, связанные с работами по использованию атомной энергии, стимулировали интерес к координационной химии, поскольку большинство соединений переходных элементов, по крайней мере в водных растворах, являются комплексными кроме того, стало совершенно очевидным, что эта область представляет широкое поле ДЛЯ исследований, результаты которых могут найти применение в прикладной, аналитической и фармацевтической химии. Современное развитие координационной химии обусловлено двумя основными обстоятельствами, которые предшествовали работам по использованию атомной энергии. Речь идет о развитии квантовой механики и применении новых физических методов для изучения неорганических комплексных соединений. Эти две области развивались постепенно и взаимно дополняли друг друга. Специалисты по квантовой механике смогли связать стереохимию неорганических соединений с электронной конфигурацией атомов, но в большинстве случаев они вынуждены ограничиваться чисто качественными предсказаниями, а часто—указанием на формы, которые можно было бы приписать той или иной молекуле. Дальнейшее уточнение вопроса о форме молекулы часто может быть проведено на основе рассмотрения физических свойств вещества— [c.245]


    Физическая органическая химия развивается по трем основным направлениям 1) исследование влияния строения реагентов и условий взаимодействия на равновесие и скорость реакций, 2) изучение механизмов реакций и 3) применение статистической физики и квантовой механики к исследованию органических веществ и их реакций. Конечно, эти проблемы, если их рассматривать в щироком плане, охватывают значительную часть химии вообще. Поэтому следует подчеркнуть особенность, характерную для методологии физической органической химии главное внимание уделяется тем вопросам, решение которых важно для развития органической химии в целом. Достижения физической органической химии основаны на применении теорий и методов физической химии к огромному материалу, накопленному за 100 лет интенсивного изучения органических реакций и развития теории строения органических соединений. Практически неисчерпаемое разнообразие органических структур открывает единственную в своем роде возможность подробного систематического подхода к проблемам реакционной способности. Изучение реакций сложных природных веществ способствовало развитию теоретических представлений физической органической химии, которые теперь в свою очередь помогают устанавливать строение природных соединений. [c.7]

    Хочу еще раз подчеркнуть, что химия, тесно связанная с физикой, не может обойтись без физических методов исследования, как экснериментальных, так и теоретических. Конечно, было бы нелепо,— и я далек от этой мысли,— сводить всю химию к физике. Этого делать не следует. Но неотделимой частью химической теории является квантовая механика, и игнорировать это обстоятельство было бы ошибочно. [c.252]

    Анализ теории и методов расчета геометрического строения молекул приводит к выводу о том, что квантовая механика служит в данном случае лишь основой для понимания физического содержания закономерностей, установленных экспериментально. Границы применимости приближенных представлений и методов расчета основных геометрических параметров молекул можно определить только при направленных экспериментальных исследованиях. [c.377]

    Из теоретических методов исследования, находящих применение в различных разделах физической химии, можно выделить метод статистический, метод квантовой механики и метод термодинамический. Первый из них основан на применении к рассматриваемой системе, состоящей из очень большого числа частиц, законов теории вероятности. Примером такого подхода может служить кинетическая теория газов. Исходя из допущения о полной беспорядочности движения отдельных молекул таза и определяя наиболее вероятные сочетания их, для системы, состоящей из очень большого числа молекул, эта теория дает возможность установить важные соотношения между различными свойствами газа и определить их зависимость от условий существования газа. Статистический метод возник во второй половине прошлого века к нашему времени он сильно развился, но вместе с тем и очень усложнился. [c.28]

    Поскольку детальное рассмотрение механизма химических реакций невозможно без знания электронного строения реагентов и возникающих в процессе реакции промежуточных комплексов, в настоящей главе мы остановимся на основных методах расчета электронной структуры молекул. Физическая основа этих методов была сформулирована квантовой механикой, а применение методов квантовой механики к молекулярным системам выделилось в отдельную область — квантовую химию. Граница между квантовой механикой и квантовой химией в достаточной мере условна, как условно и само разделение объектов их изучения. Так, к молекулярным системам в настоящее время принято относить не только сами молекулы и их комплексы, но и дефекты в кристаллах, комплексы молекул с поверхностью твердых тел, различные агрегаты, образующиеся в растворах, в том числе и такие, казалось бы, чисто физические объекты, как сольватироваиный электрон. Именно специфика объектов исследования и определяет квантовую химию как отдельную область науки. Следует отметить, что никаких новых физических идей, кроме постулатов квантовой механики, квантовая химия не содержит, однако особенности химических объектов потребовали от нее создания собственного оригинального математического аппарата, поскольку рещенне волнового фавнения Шредингера, являющегося основой квантовой механики, для подавляющего большинства химических объектов без введения ряда приближений и упрощающих предположений невозможно. Эти приближения, а также соответствующие результирующие уравнения для волновой функции, определяющей электронное распределение в молекулярных системах, и составляют математический аппарат квантовой химии, на котором, в свою очередь, [c.37]


    Историю физической химии в XX веке нет возможности изложить в кратком очерке. Поэтому будет дана лишь обш,ая характеристика развития физической химии в XX веке. Если для XIX века было характерно изучение свойств веш,еств без учета структуры и свойств молекул, а также использование термодинамики, как основного теоретического метода, то в XX веке на первый план выступили исследования строения молекул и кристаллов и применение новых теоретических методов. Основываясь на крупнейших успехах физики в области строения атома и используя теоретические методы квантовой механики и статистической механики, а также новые экспериментальные методы (рентгеновский анализ, спектроскопия, масс-спектрометрия, магнитные методы и многие другие), физики и физико-хидшки добились больших успехов в изучении строения молекул и кристаллов и в познании природы химической связи и законов, управляющих ею. [c.15]

    Уровень развития современной химии ставит перед иселедова-телями все более сложные задачи, для решения которых уже недостаточно перечисленных методов. И физическая химия попол няегся новейшими методами исследования, основанными на законах молекулярной и статистической физики, а также квантовой механики. У химиков появилась возможность заглянуть в микромир вещеотва, выяснить строение молекул и атомов, уетановить природу химической связи и на основе этого лучше понять сущность явлений природы. [c.7]

    Начавшееся физическое изучение белковых молекул со временем приобретает исключительно важное значение. Физика привнесла в эту область строгость и глубину своих воззрений и концепций, количественные теоретические и экспериментальные методы. Квантовая механика, работы В. -Кеезома (19 6 г.), Д. Дебая (1920 г.), В. Гейглера и Ф. Лондона (1928 г.), Ф. Хунда (1928 г.), Э. Хюккеля (1930 г.), Дж. Леннарда-Джонса (1931 г.), Л. Полинга (1936 г.) и многих других физиков подвели черту под развитием классической органической химии и заложили основы современной теоретической химии (квантовой механики молекул или квантовой химии). Они показали, что помимо валентных взаимодействий атомов существуют и могут оказывать заметное влияние на химическое поведение и формообразование молекул, особенно макромолекул, ранее не принимавшиеся во. внимание невалентные взаимодействия атомов (дисперсионные, электростатические, торсионные, водородные связи). Для познания белков, чувствительных к внешним условиям, использование физических и физико-химических методов, гарантирующих, как правило, не только химическую, но и пространственную целостность молекул, имело важное, часто определяющее значение на всех этапах исследования белков от выделения и очистки до установления пространственной структуры и выяснения механизмов функционирования. [c.66]

    Второй путь построения теории катализатора связан с созданием конкретных гипотез о природе и структур активных структур и о механизме их действия. Этот путь более увлекателен и больше соответствует химическим традициям, однако для каталитических процессов и катализаторов этот путь очень труден. Достоинствами его являются возможность более детального предвидения и тесная связь с механизмом процесса. К сожалению, то, что выигрывалось в глубине, пока нередко проигрывалось в общности. Несмотря на это, развитие и обоснование детальных модельных представлений и изучение глубокого механизма простейших стадий, из которых складывается процесс, и природы действующих сил являются необходимой и очень важной задачей, над которой мы думаем в первую очередь сосредоточить наши дальнейшие усилия, несмотря на неудачи первых авторов электронных теорий катализа. При этом мы стараемся по возможности избежать скверной, но весьма распространенной традиции, привлекать без серьезного выбора и основания случайные модели, строить спекулятивнне схемы, основанные на случайных догадках. Будущее теории катализатора обеспечит не это, а беспристрастное, пристальное изучение реальных явлений катализа, с мобилизацией для их исследования и объяснения наиболее совершенных представлений теории строения твердого тела и молекулы, методов современного физического эксперимента и расчетной техники квантовой механики. [c.51]

    Вместе с новыми методами исследования теоретическая химия получила от физики и физической химии и ряд новых представлений. Много важных новых представлений пришло в химию из теории строения атома. Эти представления развивались и углублялись х имиками на основе данных химии. Например, представление о паре электронов ковалентной связи было впервые высказано химиками на основе данных физики о строении атома, развито в химии и в дальнейшем получило обоснование и развитие со стороны квантовой механики. [c.44]

    В настояпхее время создана целая отрасль науки — квантовая химия, занимающаяся приложением квантовомеханических методов к химическим проблемам. В этом направлении уже достигнуты значительные успехи. Естественно, однако, что отнюдь не все вопросы строения и реакционной способности органических соединений могут быть рещены методами квантовой механики. Квантовая механика изучает законы движения электронов и ядер, т. е. законы низшей формы движения, сравнительно с той, которую изучает химия (движение атомов и молекул), а высшая форма движения не может быть сведена к низшей. Даже для весьма простых молекул такие вопросы, как реакционная способность веществ, механизм и кинетика их превращений не могут быть изучены только методами квантовой механики. Поэтому важная задача заключается в правильном сочетании химических методов исследования с методами квантовой механики и физическими методами исследования органических соединений и их реакций. [c.53]

    Решение проблемы строения бензола, родоначальника ароматических соединений, являющейся одной из центральных в органической химии, производилось на основе всестороннего использования самых разнообразных экспериментальных методов в химии, физических методов и позднее методов расчета квантовой механики. Прежде всего на основании опытного исследования соответствующих продуктов замещения бензола А. Ладенбург, Г. Гюбнер и Петерман доказали, что все шесть атомов водорода в бензоле равноценны. Затем экспериментально установили, что однозамещенные производные бензола, например бромбензол, не имеют изомеров. Это возможно только при замкнутой цепи углеродных атомов бензола. В противном случае должно было бы существовать по крайней мере три изомера. Следовательно, бензол имеет особое, отличное от алифатических соединений, строение. [c.323]

    Физическая химия применяет законы термодинамики, статистики, классической и квантовой механики для исследования химических явлений. Непосредственные контакты между химией и физикой долгое время оставались неопределенными и ограничивались развитием атомистики древних (П. Гассенди, 1592—1655) и использованием атомистических представлений прирешении физических задач (Бернулли, 1700—1780). М. В. Ломоносов был, по-ви-димому, первым, кто оценил необычайные возможности физики в раскрытии природы химических явлений. По крайней мере именно он был автором первого курса физической химии (1752), прочитанного им студентам Академии наук и названного Введение в истинную физическую химию . В дальнейшем методы этой науки развивались и совершенствовались медленно, так как ее прогресс зависел от успехов и химии, и физики. Лишь в 1887 г. в Лейпциге была учреждена кафедра физической химии, ставшая впоследствии крупным центром физико-химических исследований. Период между этими датами можно охарактеризовать как время напряженных поисков общих физических принципов, которые могли бы стать фундаментом для создания методов исследования химических процессов. В начале XIX в. С. Карно, отправляясь от неверной теории теплорода, сделал правильное заключение о работе тепловых машин доля теплоты, превращенной в работу, будет тем больше, чем больше разность температур нагревателя и холодильника. Глубокий смысл этого вывода был понят лишь в сере- дине прошлого века Р. Клаузиусом и В. Томсоном. С именами этих ученых и связано открытие важнейшего закона природы, I который называют вторым началом термодинамики. Клаузиус показал, что в изолированной системе сумма выделенной теплоты и совершенной работы является функцией состояния. Клаузиус называл ее эргалом в настоящее время для этой функции при- j нято название внутренняя энергия. Несколько лет спустя Клау- ] зиус открывает другую функцию состояния — энтропию эта функ- А ция позволяет предвидеть принципиальную возможность того или 4 иного процесса.  [c.4]

    Разумеется, на пути к максимальной краткости нельзя обойтись без жертв, возможно не всегда оправданных. Некоторые аспекты проблемы хотелось бы видеть более полно и глубоко орвещенными. На наш взгляд, это в первую очередь касается первичных процессов фотосинтеза и в особенности вопроса о реакционных центрах фотосинтеза и механизме их действия. Фотосинтез как специфический фотоэнергетический процесс отличается от других биохимических темновых процессов прежде всего теми первоначальными звеньями, благодаря которым энергия кванта трансформируется в энергию химической связи. Это — поглощение квантов молекулами. пигмента, перенос энергии электронного возбуждения в фотосинтетической единице, разделение зарядов и первичная стабилизация энергии в реакционных центрах. Именно здесь, в этих звеньях, преодолеваются наибольшие и специфические для фотосинтеза трудности, связанные с необходимостью сопряжения столь различных процессов, как поглощение электромагнитного излучения и биохимические реакции. И современные исследования шаг за шагом вскрывают механизм этих процессов, показывая, каким образом природа преодолела эти трудности и, создав уникальную молекулярную организацию фотосинтетических единиц реакционных центров, обеспечила высокую скорость и эффективность запасания энергии света (увы, пока еще не достигнутые в искусственных фотохимических системах ). Неудивительно поэтому, что изучение первичных процессов и в особенности реакционных центров фотосинтеза — одно из наиболее быстро развивающихся направлений, успехи которого основаны на использовании самых современных физических методов исследования (в частности, сверхбыстрой (пикосекундной) лазерной спектроскопии) и па объединении идей целого ряда наук от молекулярной биологии до квантовой механики. Несомненно этим достижениям должно быть уделено большее внимание несмотря на те очевидные трудности, которые возникают при изложении физических аспектов фотосинтеза в кни- [c.6]


Смотреть страницы где упоминается термин Методы исследования физические квантовой механики: [c.7]    [c.7]    [c.21]    [c.15]    [c.8]    [c.9]    [c.5]   
История стереохимии органических соединений (1966) -- [ c.349 ]




ПОИСК





Смотрите так же термины и статьи:

Квантовая механика

Методы квантовой механики

Методы физические

Механика

Механика механика

Физическое исследование



© 2025 chem21.info Реклама на сайте