Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная и ковалентная связи

    ОСНОВНЫЕ ТИПЫ ХИМИЧЕСКОИ СВЯЗИ —ИОННАЯ и КОВАЛЕНТНАЯ СВЯЗИ [c.133]

    Ионная и ковалентная связь 21—23, 24—30. [c.187]

    Для твердых тел чаще более характерны смешанные виды связи. Известно, что ионная и ковалентная связи, а также ковалентная и металлическая не имеют резкого разграничения и может наблюдаться переход от одного вида связи к другому. Так, упрочнение металла в результате пластической деформации и легирования объясняется превращением металлической связи в ковалентную. При деформации в металлах появляются области высокой прочности и малой пластичности, приближающиеся по своим свойствам к типичным веществам, обладающим ковалентной связью (алмазу). [c.10]


    Ионная и ковалентная связи. Переход электрона при взаимодействии атомов А и В, резко отличающихся по электроотрицательности, превращает эти атомы в противоположно заряженные ионы  [c.134]

    Рассмотренные в этой главе типы химической связи в твердых телах систематизированы в табл. 14-3. Ионные, или электростатические, связи, а также ковалентные связи характеризуются энергией связи порядка 400 кДж моль Металлические связи могут иметь различную прочность, однако она сопоставима с прочностью ионных и ковалентных связей. Водородные связи намного слабее энергия связи между атомами О и Н до- [c.639]

    Резкой границы между ионной и ковалентной связями не существует. Ионную связь можно рассматривать как крайний случай полярной ковалентной связи, при образовании которой общая электронная пара полностью смещается к атому с большей электроотрицательностью. [c.105]

    Современная теория атомов и молекул неопровержимо убеждает в том, что, несмотря на многообразие химической связи, последняя вместе с тем едина.по своей природе. Хотя понятия ионной и ковалентной связей, являющиеся в значительной степени упрощенными и приближенными, не имеют принципиального значения для раскрытия различных случаев взаимодействия атомов с образованием молекул, рассмотрим эти понятия в свете периодического закона. [c.21]

    Собственно ионная и ковалентная связи оказались предельными случаями. Реальные связи носят, как правило, промежуточный характер. [c.232]

    Ионная и ковалентная связи. В результате перехода электронов прп взаимодействии атомов А и В, резко отличающихся по электроотрицательности, эти атомы превращаются в противоположно заряженные ионы, которые притягиваются друг к другу в соответствии с законом Кулона, образуя молекулы. [c.68]

    Теория электролитической диссоциации. Неэлектролиты и электролиты. Гидратация ионов. Диссоциация в воде веществ с ионными и ковалентными связями. Сильные и слабые электролиты. [c.61]

    Мы уже неоднократно упоминали о различиях в физических и химических свойствах между металлами и неметаллами. В гл. 7 и 8 более или менее подробно обсуждались особенности ионной и ковалентной связей. Рассмотрим теперь подробнее характерные физические свойства металлов, а затем постараемся связать их с теорией химической связи в металлах. [c.360]

    Если разность электроотрицательностей двух атомов велика, орбиталь может быть настолько сдвинута в одну сторону, что практически уже не перекрывается с другими ядрами в этом случае связь между атомами ионная. Этот предельный случай выходит за рамки приведенного выше рассмотрения связи в органических молекулах. Большинство связей можно рассматривать как промежуточные между ионной и ковалентной связью, и тогда говорят о проценте ионного характера связи, который указывает на степень смещения электронного облака, или о постепенном переходе от ионной связи к ковалентной. [c.31]


    Несмотря на высокую степень поляризации, семиполярные связи в отличие от ионных не способны диссоциировать и занимают промежуточное положение между ионной и ковалентной связями. [c.28]

    Этот тип связи представляет собой промежуточную форму между ионной и ковалентной связями. Полярная связь обычно осуш,ествляется так же, как и ковалентная, за счет образования пары общих.электронов,..да,эта пара сильнее смещена к одному из взаимодействующих атомов, чем к другому, например  [c.28]

    Особенности растворов электролитов. Важная особенность растворов электролитов состоит в образовании молекулярных структур между ионами и молекулами растворителя за счет ионных и ковалентных связей в отличие от растворов неэлектролитов, где образуются в основном межмолекулярные структуры за счет сил Ван-дер-Ваальса и водородных связей. Между молекулами растворителя в обоих случаях образуются межмолекулярные структуры, которые называют надмолекулярными. [c.223]

    Были рассмотрены несколько простых случаев химической связи. В заключение необходимо еще раз отметить формальный характер различий между ионной и ковалентной связью первый соответствует крайнему выражению полярного характера ковалентной связи. [c.64]

    Не отчаивайтесь, если вы забыли об ионных и ковалентных связях они будут детально рассматриваться в следующей главе. [c.24]

    Отметим, что кроме ионной и ковалентной связи существует еще три типа сил притяжения силы Ван-дер-Ваальса, или молекулярные силы, металлические связи и водородные. [c.157]

    Ионную и ковалентную связи можно рассматривать как предельные типа химической связи.— Прим. ред. [c.86]

    Уже отмечалось, что молекулярные силы, или силы Ван-дер-Ваальса, очень слабы по сравнению с силами ионной и ковалентной связи. Поэтому твердые тела, в которых силы сцепления имеют молекулярную природу, всегда являются мягкими, плавящимися при низких температурах и легко летучими. К такого типа кристаллам относятся, например, благородные газы, азот, Нг, СН4, бензол и другие газы и жидкости, охлажденные ниже температур затвердевания. [c.163]

    В гл. 4. Вы расширите свои познания о ионной и ковалентной связях, познакомитесь с явлением поляризации ионов и электроотрицательностью. Вам станет понятно, какими достоинствами и недостатками отличаются представления об ионном и ковалентном характере связи, в какой мере эти недостатки удается устранить, применяя теорию кристаллического поля или метод валентных схем. После изучения материала гл. 4 Бы поймете стремление к созданию единой модели химического взаимодействия, учитывающей как ионный, так и ковалентный вклад в образование связи. Такую модель предлагает теория молекулярных орбиталей. [c.169]

    Имеется много веществ, в молекулах которых одновременно присутствуют ионная и ковалентная связи, например, азотнокислый аммоний NH4NO3 и уксуснокислый кальций Са(СНзСОО)а. Атомы в отдельных группах в этих молекулах (NH +, NO3, СН3СОО ) связаны между собой ковалентной связью и по своему строению и спектрам подобны нейтральным ковалентным молекулам. [c.286]

    Какой физический эффект ответствен за возникновение вандерваальсовых сил притяжения Чем объясняется вандерваальсово отталкивание Сравните причины возникновения вандерваальсовых сил притяжения и отталкивания с причинами образования ионных и ковалентных связей. [c.640]

    Объем требований. Основные сведения о строении атомов. Состав атомных ядер. Изотопы. Расположение электронов по энергетическим уровням (элементов первых трех периодов). Ионная и ковалентная связь. Объяснение валентности с точки зрения строения атомов. Окислительновосстановительные реакции. [c.63]

    Несмотря на то что в элементарной теории валентности ионную и ковалентную связи рассматривают исходя из совершенно различных предпосылок, Льюис уже в 1916 г. предположил, что понятие связи, образуемой парой электронов, включает ряд промежуточных типов, начиная с крайне полярной связи и кончая неполярной. Эта точка зрения принята и современной теорией валентности. Здесь следует лишь отметить, что степень полярности зависит также и от расстояния между двумя атомами. [c.131]

    Два или большее число атомов могут образовывать связь, если они обобществляют между собой пару электронов. Наиболее известная связь такого типа — когда объединяются два электрона от двух атомов (по одному от каждого). Двухэлектронная связь возникает в результате увеличения электронной плотности между двумя ядрами. Можно себе представить, что каждое из ядер прочно связано с двумя электронами, и в результате оба ядра удерживаются в непосредственной близости друг от друга. Связь, которая требует взаимодействия (или перекрывания ) двух атомных орбиталей атомов, вовлеченных в связь, называется ковалентной связью. Электронная пара в этой связи поделена между двумя атомами . В конечном счете ионные и ковалентные связи представляют два крайних случая в спектре типов связей (рис. 2-6). Промежуточной является поляризованная ковалентная [c.31]


    Каков физический смысл ионной и ковалентной связей с точки зрения общих представлений, заложенных в теореме Гельмана—Фейнмана  [c.377]

    Положительно заряженное ядро окружено электронами, расположенными на концентрических оболочках или энергетических уровнях. На каждом уровне максимально может находиться определенное число электронов два на первом, восемь на втором, восемь или восемнадцать на третьем и т. д. Наиболее стабильны соединения, в которых внешняя оболочка заполнена, как в инертных газах. И ионная и ковалентная связи возникают вследствие стремления атомов к образованию такой стабильной конфигурации электронов. [c.11]

    Необходимо также принять во внимание и некоторые другие типы взаимодействий, которые, будучи более слабыми, чем ионные и ковалентные связи, тем не менее важны как определяющие строение или существенно влияющие па структуры больших групп кристаллических соединений таковы, например, водородные связи (Н-мостики) и связи с переносом заряда. Водо [c.17]

    В обычных условиях в большинстве твердых тел с ионной и ковалентной связью, например оксидах и галогенидах, миграция ионов незначительна. Атомы обычно располагаются в определенных узлах решетки и передвижение их возможно только [c.5]

    В предыдущих разделах обсуждались материалы, которые являются проводниками электрического тока. Однако зонная теория с успехом может быть применена для объяснения поведения любых неорганических твердых тел независимо от того, проводят они ток или нет. Зонная теория позволяет по-новому взглянуть па структуру, природу химической связи и свойства неорганических твердых тел. Она дополняет информацию, получаемую при применении моделей ионной и ковалентной связи. Большинство неорганических веществ имеют более сложную структуру, чем металлы и полупроводники. Им меньше уделяют внимания и при проведении теоретических расчетов зонной структуры. Следовательно, зонная структура многих неорганических соединений известна весьма приблизительно. [c.85]

    Частицами, образующими кристалл, закономерно располагающимися в пространстве, могут быть ионы (разноименно заряженные, как в Na l, и одноименные, как в металлах) или нейтральные атомы (одного и того же элемента, как в алмазе, и различных элементов, как в Si ), или целые молекулы, как в кристаллах льда или бензола. В соответствии с этим связи между частицами кристалла по характеру более разнообразны, чем связи, с которыми мы познакомились, рассматривая строение молекул. Кроме тех же ионной и ковалентной связей, в кристаллах имеются металлическая и межмолекулярная связи. Наряду с этими основными видами связей в кристаллах нередко проявляются водородные и иоиодипольные связи. [c.124]

    Растворы сходны как с механическими смесями частиц, так и с индивидуальными химическими соединениями. От первых они отличаются тем, что любой макроскопический объем раствора обладает таким же химическим составом и физическими свойствами, как и вся его масса. От химических соединений растворы отличаются тем, что их состав может изменяться в зависимости от количеств взятых компонентов и они не подчиняются закону кратных отношений. Так, состав водного раствора хлорида натрия может произвольно меняться в пределах, допустимых его растворимостью. В 100 г воды при 293 К можно растворить любое количество Na I в пределах от О до 36,8 г, что соответствует предельной растворимости соли при данной температуре. Растворы отличаются от химических соединений также и природой связи. Если для химических соединений характерны в основном ионная и ковалентная связи, то для растворов характерны более слабые ван-дер-ваальсовы, а в некоторых случаях и водородные связи. [c.79]

    Энергия связи — это работа, необходимая для разрыва химической связи во всех молекулах, составляющих одну грамм-молекулу вещества. Чаще всего измеряют энергию связи в ккал/моль. Наиболее прочными являются ионные и ковалентные связи, энергии этих связей составляют величины от десятков до сотен ккал/моль. Металлическая связь, как правило, несколько слабее ионных и ковалеитпых связей, но величииы энергий связи в металлах близки к значениям энергии ионных и ковалентных связей. Об этом свидетельствуют, в частности, высокие температуры кипения металлов, например 357°С (Нд), 880°С (Ма), 3000°С (Ре) и т. д. Энергии донорно-акценторных и водородных связей очень небольшие по сравнению с энергиями межатомных связей. Так, энергия водородной связи составляет обычно величину 5—10 ккал/моль, энергия донорно-ак-цепторной связи также составляет обычно величину нескольких ккал/моль и лишь в некоторых случаях может достигать десятков ккал/моль. Следовательно, до- [c.100]

    Развитие представлений о природе комплексных соединений тесно связано с созданием и развитием общей теории химической связи. Уже в 20-х годах появились первые работы, применявшие идеи ионной и ковалентной связи к комплексным соединениям. Так, Косселю и Магнусу принадлежит большая заслуга в разработке электростатических представлений, а приложение идеи о парноэлектронной связи разрабатывалось в работах Сиджвика. В дальнейшем было разработано три квантовомеханических метода МВС, теория кристаллического поля (ТКП) и ММО. Ни один из этих методов не предназначался для объяснения связи только в комплексных соединениях, но и в этой области применение их оказалось весьма успешным. Они не являются противоположными друг другу. Наоборот, во многих отношениях они дополняют друг друга, трактуя одни и те же вопросы с различных точек зрения, и зачастую приводят к идентичным результатам. [c.160]

    Итак, изучение межатомных связей включает изучение ионной и ковалентной связи. Рассмотрим также некоторые проблемы, обусловленные существованием этих связей, такие, как геометрическая форма молекул. В дальнейшем будет видно, что между молекулами действуют силы, которые, хотя они и гораздо слабее межатомных, обеспечивают агрегацию молекул вещества в жидкое, а иногда и в твердое состояние за счет взаимопритяжения молекул. Эти силы называются межмолекулярными силами. [c.48]

    Последняя характеристика является прямым следствием того, что в молекуле имеется налицо крайняя степень локализации плотности валентного заряда на одном из ядер, а именно на фторе. Избыточные плотности около ядра Ы поляризуются, отталкиваясь от избыточного отрицательного заряда в области Р, и уходят на заядерную сторону ядра Ы. Внутренние части электронного облака Р имеют избытки плотности, поляризованные в сторону ядра лития, положительный заряд которого оголен, т. е. сильно деэкранирован со стороны ядра фтора. Эта последняя поляризация добавочно экранирует ядро Р и уменьшает взаимное отталкивание ядер. Профильные разрезы контурных диаграмм вдоль межъядерных осей приведены как для Ь1Р, так и для N2 и иллюстрируют две возможные крайности в перераспределении исходных электронных зарядовых плотностей, требуемых для образования химической связи. Эти две модели дают как бы определение крайним случаям ионной и ковалентной связи. [c.259]

    Систематизируя кис.лородные соединения элементов по доминирующему типу химической связи, можно выделить три основных типа соединений с металлической, преимущественно ионной и ковалентной связью. К характеристическим соединениям относятся только оксиды, подчиняющиеся правилу формальной валентности. В характеристических оксидах доминирующим типом связи являет ся ионно-ковалентная, поэтому их можно подразделить на два типа с преимущественно ионной и преимущественно ковалентной связью. Последние, в свою очередь, по структурному признаку подразделяются на координационные и молекулярные (например, SiO . и СО2). Ионные оксиды всегда имеют координационную структуру. Ионно-ковалентное взаимодействие характерно и для анионоизбыточных кислородных соединений, однако они обладают особыми свойствами и обычно рассматриваются отдельно. Такую же специфическую группу составляют и металлоподобные оксиды. Принимая во внимание зависимость типа кристаллической структуры оксидов от характера химической связи, можно сделать вывод, что в немолекулярных структурах с ковалентной связью координационные числа не должны превышать 4, а в ионных кристаллических решетках реализуются более высокие координационные числа. Так, в кубической структуре Si02 (/i -кристобалит) к.ч (Si) 4, а к.ч. (О) 2 (рис. 130), в структуре Т1О2 (рутил) к.ч. (Ti) [c.266]

    С нач. 20 в. осн. внимание в Н. х. уделяется составу и строению хим. соединений. А. Ле Шателье, Н. С. Курнаков, Г. Тамман, У. Робертс-Остен изучают сплавы металлов и металлиды. Н. С. Курнаков создает основы термич. анализа, А. Вернер, И. Тиле, Л. А. Чугаев и др. разрабатывают основы координац. химии. В- Коссель, Г. Льюис и др. создают электронную теорию валентности. Вводятся понятия об ионных и ковалентных связях, электроотрицательности, измеряются д и1пы связей и валентные углы для мн. простых молекул, нх энергии диссоциации, определяется и уточняется кристлл п1ч. структура в-в. Синтезируются новые классы соединений, напр, фториды благородных газов (Н. Бартлетт, 1962), кластеры, соединения внедрения графита. [c.373]

    Химические и физические свойства многих веществ показывают, что в них должны одновременно быть и ионные, и ковалентные связи. В таких веществах обычно содержатся группы ковалентно связанных атомов, и каждая группа в целом несет на себе электрический заряд. С двумя примерами таких групп, и 82 , мы уже познакомились в разд. 7.6. В соединении КН4С1 между ионами и С1 осуществляется ионная связь. Внутри ионов КН4 и 82 атомы связаны друг с другом обобществляемыми электронными парами, но вся группа в целом несет на себе электрический заряд, и поэтому соединения, состоящие из таких групп, обладают ионными свойствами. [c.123]

    Вандерваальсовы силы. Большинство взаимодействий между молекулами, отличающихся от обычных ионных и ковалентных связей, принято в целом называть вандерваальсовыми силами притяжения. Эти силы, представление о которых было впервые введено голландским ученым Ван-дер-Ваальсом, обусловлены взаимодействием положительных и отрицательных зарядов соседних атомов. Можно представить себе, что электроны атома А отталкивают электроны атома В, но притягивают положительный заряд ядра В, и в то же время электроны атома В отталкивают электроны атома А, но притягивают положительный заряд ядра А. Положительные заряды ядер А и В отталкивают друг друга кроме того, большие силы отталкивания возникают от взаимодействия между электронными облаками атомов А и В при их сближении. Равновесие между силами отталкивания и притяжения достигается при межъядерном расстоянии порядка 4 А. При больших межъядерных расстояниях, от 4 до 10 А, преобладают силы притяжения (см. рис. 8.24). Эти силы притяжения довольно слабы и убывают обратно пропорционально шестой степени расстояния между атомами. [c.145]

    Данная глава посвящена физическим и химическим свойствам чистьк элементов и сходных с ними веществ. Строение этих веществ существенно отличается от рассмотренного нами ранее строения соединений с ионными и ковалентными связями. Металлические и неметаллические элементы существуют вследствие образования химической связи между одинаковыми атомами, что ограничивает число возможных молекулярных образований и способов расположения атомов в твердых веществах. Неметаллические элементы образуют неполярные ковалентные молекулы, начиная от двухатомных молекул типа Н2, О2, N2 или 2 и кончая гигантскими молекулами элементарного углерода и кремния. Ко всем этим системам вполне применимы те критерии, определяющие устойчивость молекул, которые были изложены в гл. 7 и 8. В этих системах все валентные атомные орбитали с достаточно низкой энергией заполнены связывающими или несвязывающими электронами а, геометрия молекул определяется отталкиванием валентных электронных пар. Поскольку атомы благородных газов обладают устойчивым электронным строением, эти элементы существуют в виде одноатомных молекул. Многие неметаллические элементы способны существовать в одной из двух или даже нескольких аллотропных форм в качестве примера можно привести углерод, существующий в виде алмаза и графита, а также кислород, элементарными формами которого являются О2 и О3 (озон). Размеры и строение молекул неметаллических элементов определяются теми же факторами, которые рассматривались в гл. 7 и 8. Некоторые из этих веществ будут подробно обсуждаться в разд. 22.5. [c.387]

    Проведенное вьппе рассмотрение показывает что, пользуясь приемом анализа парциальных сип, действующих на ядра молекулы со стороны различных участков электронного облака, можно с единых позиций достаточно подробно исследовать н охгфакгеризовать химичес связь в различных рядах соединений Видно, что иногда, особенно в случае распределенных связей, к которым относятся, очевидно, и многие координационные связи, имеем достаточно сложный эффект, который в отличие от простых ионных и ковалентных связей не может рассматриваться как результат парных взаимодействий, а существенно зависит от строения значительной части молекулы и вряд ли может быть охарактеризован одним термином [c.122]

    Перед детальным рассмотрением этой величины необходимо рассмотреть общее влияние ионных и ковалентных связей на растворимость. В ионной кристаллической решетке составляющие ее ионы противоположно заряжены и удерживаются вместе электростатическими силами. Для таких ионных кри-стал юв характерны хорошая растворимость в воде и слабая растворимость в неполярных рг створителях. Такое поведение называется солеподобным или солевым. Твердые вещества с преимущественно ионными взаимодействиями называются солями. Таким образом, растворимость многих солей уменьшается при добавлении органического растворителя к водному ргютвору. Этот факт часто используется в гравиметрическом анализе. Как правило, все соли явля- [c.199]


Смотреть страницы где упоминается термин Ионная и ковалентная связи: [c.196]    [c.86]    [c.95]    [c.135]    [c.199]   
Смотреть главы в:

Строение вещества -> Ионная и ковалентная связи

Строение вещества Издание 2 -> Ионная и ковалентная связи

Органическая химия -> Ионная и ковалентная связи




ПОИСК





Смотрите так же термины и статьи:

Ион ионы связи

Ионная связь

Ковалентность

Связи ковалентные Связи

Связь ковалентная



© 2025 chem21.info Реклама на сайте