Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эффект релаксационный

    Что собой представляют релаксационный эффект, электрофоретическое торможение и поверхностная проводимость В каких случаях их необходимо учитывать при расчете -потенциала  [c.103]

    Кондуктометрический метод анализа основан на изучении зависимости между проводимостью раствора и концентрацией ионов в этом растворе. Электрическая проводимость —электропроводность раствора электролита — является результатом диссоциации растворенного вещества и миграции ионов под действием внешнего источника напряжения. В поле электрического тока движущиеся в растворе ионы испытывают тормозящее действие со стороны молекул растворителя и окружающих противоположно заряженных ионов. Это так называемые релаксационный и электрофоретический эффекты. Результатом такого тормозящего действия является сопротивление раствора прохождению электрического тока. Электропроводность раствора определяется, в основном, числом, скоростью (подвижностью) мигрирующих ионов, количеством переносимых ими зарядов и зависит от температуры и природы растворителя. [c.103]


    В кондуктометрическом методе анализа измеряемым аналитическим сигналом является электропроводность раствора. Зависимость этого параметра от концентрации представлена на рис. 2.1. По мере увеличения концентрации растворенного электролита увеличивается количество ионов-переносчиков заряда, т. е. растет удельная электропроводность. Однако после достижения определенного максимального значения удельная электропроводность начинает уменьшаться, поскольку для сильных электролитов усиливаются релаксационный и электрофоретический эффекты, а для слабых электролитов уменьшается степень их диссоциации. Электропроводность бесконечно разбавленного раствора Коо определяется подвижностью ионов в отсутствие тормозящих эффектов X ОО. и Хоо.. [c.103]

    Эффект релаксационного торможения. Согласно электростатической теории растворов сильных электролитов ионная атмосфера обладает центральной симметрией. При движении иона в электрическом поле симметрия ионной атмосферы нарушается. Это связано с тем, что перемещение иона сопровождается разрушением ионной атмосферы в одном положении иона и формированием ее в другом, новом. Этот процесс происходит с конечной скоростью в течение некоторого времени, которое называется временем релаксации. Вследствие этого ионная атмосфера теряет центральную симметрию, и позади движущегося иона всегда будет некоторый избыток заряда противоположного знака. Возникающие при этом силы электрического притяжения будут тормозить движение иона. Таким образом, сила, действующая на ионы и определяющая скорость их движения в электрическом поле, а следовательно, электрическую проводимость раствора, будет  [c.461]

    При наложении электрического поля центральный ион начинает двигаться в одну сторону, а ионная атмосфера в противоположную. Это противоположное движение создает как бы дополнительное трение, которое и уменьшает абсолютную скорость иона. Этот эффект торможения назван электрофоретическим. Ясно, что по мере увеличения концентрации увеличиваются плотность ионной атмосферы, а следовательно, и тормозящий электрофоретический эффект. Релаксационный и электрофоретический эффекты обусловливают тормозящее действие ионной атмосферы на скорость движения ионов. Убедительным подтверждением этих представлений Дебая и Гюккеля служит эффект Вина. Если уменьшение подвижности ионов с увеличением концентрации объясняется наличием ионной атмосферы, то ее уничтожение должно привести к увеличению подвижности, следовательно и электропроводности. Поскольку скорость движения ионов пропорциональна напряжению, а скорость образования ионной атмосферы имеет конечную величину, то, очевидно, увеличивая резко напряжение, можно вывести ион из ионной атмосферы, т. е. ионная атмосфера не будет успевать образовываться. Вин показал, что при напряжении поля около 200 000 В/см наблюдается увеличение электропроводности до предельного значения Я,со. [c.295]


    В этом разделе дается краткий обзор некоторых результатов, полученных при исследовании различных "-комплексов методом ЭПР. Более полное обсуждение читатель может найти в работах [19, 20]. Прежде чем приступить к рассмотрению результатов, следует упомянуть, что спин-орбитальное взаимодействие — главный фактор, определяющий электронную релаксацию в этих системах. При ознакомлении с этим разделом читатель может столкнуться с Такими утверждениями, как расщепление в нулевом поле вызывает быструю релаксацию или анизотропия 3-фактора ведет к небольшим временам жизни электронного спинового состояния и т.д. Все эти выражения говорят об очевидных эффектах спин-орбитального взаимодействия в молекуле. Ранее уже обсуждалась связь спин-орбитального взаимодействия с релаксационными эффектами. Комплексы ионов переходных металлов второго и третьего периодов значительно более сложны для исследования методом ЭПР, поскольку в этом случае значения констант спин-орбитального взаимодействия много больше. [c.233]

    Влияние полидисперсности полимеров (молекулярномассового распределения - ММР) на реологические свойства полимерных жидкостей существенно. Это обусловлено тем, что аномалия вязкостных свойств по сути своей - релаксационный эффект. Расширение ММР волокнообразующих полимеров обусловливает усиление аномалии вязкостных свойств. Как отмечалось ранее, аномалия вязкостных свойств растворов и расплавов полимеров определяется несколькими факторами  [c.201]

    Перемещение иона в электрическом поле сопровождается разрушением ионной атмосферы в одном его положении и созданием ее в другом. Разрушение старой ионной атмосферы и образование новой происходит не мгновенно, а в течение некоторого времени, которое называется временем релаксации. Вследствие этого ионная атмосфера теряет центральную симметрию и позади движущегося иона всегда будет находиться некоторый избыток заряда противоположного знака. Возникающие силы электрического притяжения тормозят движение иона (эффект релаксационного торможения). [c.237]

    Если изменение эквивалентной электропроводности, связанное с электрофоретическим эффектом, обозначить через АА.,, а с релаксационным эффектом — через то электропроводность при концентрации с выразится уравнением [c.262]

    Следовательно, частотный эффект должен быть меньшим, чем эффект Вина, и, сопоставляя значения того и другого, можно расчленить суммарный эффект уменьшения электропроводности на составляющие, обусловленные электрофоретическим й релаксационным торможениями. Действительно, эффект Вина возникает при полном уничтожении ионной атмосферы, а следовательно, н обоих эффектов торможения. Частотный -эффект объясняется лишь исчезновением симметрии ионной атмосферы. Опыт показывает, что последний эффект примерно в 3 раза слабее, чем эффект Вина, т. е. электрофоретический эффект в 2 раза сильнее эффекта релаксации. [c.436]

    Сверхтонкое расщепление на ядрах лиганда зависит от контактного взаимодействия Ферми (F. С.), дипольного взаимодействия с ионом металла (DIP), дипольных эффектов, обусловленных электронной плотностью на р-орбитали лиганда (LDP), и псевдоконтактного вклада иона металла (LP ), возникающего за счет взаимодействия орбитального углового момента неспаренного электрона с ядерным спином лиганда. Если сверхтонкая структура, обусловленная лигандом, разрешена, то последний член обычно мал по сравнению с другими. При наличии интенсивного спин-орбитального взаимодействия следует ожидать большого псевдоконтактного вклада, но релаксационные эффекты осложняют наблюдение спектра ЭПР и. следовательно, сверхтонкого расщепления на лиганде. Значения А. и А выражают с помощью уравнений (13.38) и (13.39)  [c.231]

    Таким образом, основу процесса отмывки ионита составляет изменение физико-механических свойств его под воздействием проникновения растворителя в ионит, электростатических явлений (доннановского потенциала), явлений сольватации (гидратация) и тепловых эффектов. Существующие подходы к составлению математических модулей процесса имеют определенные недостатки (в моделях не отражена взаимосвязь релаксационных, диффузионных, тепловых, химических и др. явлений модели не охватывают весь интервал разбавления растворов и степени сшитости ионитов). [c.376]

    Рассмотренные эффекты не исчезают мгновенно после прекращения действия магнитного поля. Вода некоторое (и довольно значительное) время сохраняет измененные свойства (а следовательно, и строение) и лишь постепенно переходит в нормальное состояние. Это показывает, что такие процессы обладают релаксационным характером, по-видимому, из-за того, что перестройка % [c.168]

    Для снижения скорости истечения жидкостей с удельным объемным электрическим сопротивлением выше 10 МОм м в емкости (резервуары) и для релаксации (утечки) зарядов используют релаксационные емкости, представляющие собой горизонтальный участок трубопровода увеличенного диаметра, находящийся у входа в приемную емкость. Релаксационный эффект повышают, вводя в релаксационные емкости заземленные игольчатые электроды, стальные струны и др. [c.114]

    Релаксационный эффект связан с существованием ионной атмосферы и ее влиянием на движение ионов. При перемещении под действием внешнего электрического поля центральный ион выходит из центра ионной атмосферы, которая вновь воссоздается в новом положении иона. Образование и разрушение ионной атмосферы протекает с большой, но конечной скоростью, характеристикой которой служит время релаксации. Это время может рассматриваться как величина, обратная константе скорости создания или разрушения ионной атмосферы. Время релаксации зависит от ионной силы раствора, его вязкости и диэлектрической проницаемости. Для водного раствора одно-одновалентного электролита время релаксации т выражается [c.261]


Рис. IV. 14. Релаксационный эффект при электрофорезе. Рис. IV. 14. Релаксационный эффект при электрофорезе.
    Релаксационный эффект проявляется в нарушении симметрии диффузного слоя вокруг частицы при движении фаз в противоположные стороны. Возникает внутреннее электрическое поле (диполь), направленное против внешнего поля (рис. IV. 14). Для восстановления равновесного состояния системы требуется некоторое время, называемое временем релаксации. Время релаксации достаточно велико, и система не успевает прийти в равновесие, в [c.224]

    Эффект релаксационной природы — облегчение повторной деформации (эффект Патрикеева — Муллин-за) из-за перестройки сетки вулканизата в результате скольжения и неаффинного смещения отдельных элементов цепей полимера под влиянием напряжения и замедленности возвращения сетки к исходному состоянию после снятия напряжения. Как считают, этот процесс практически не зависит от присутствия наполнителя [29—31]. [c.48]

    Воздействие акустических колебаний на технологические процессы осушествляется по трем основным направлениям вследствие поглощения звука сплошной средой происходит изменение субстанциональных свойств (релаксационные явления на молекулярном уровне) из-за нелинейных эффектов второго порядка инициируются и интенсифицируются процессы переноса на хронопространственных масштабах этих процессов, т. е. на микроуровне морфологической структуры процессов под воздействием явлений первого порядка среда испытывает воздействие как на уровне масштаба потока в целом, так и на уровне его отдельных морфологических компонентов — на макроморфо логическом уровне. [c.162]

    В дальнейшем, развивая эти идеи, Онзагер вывел теоретическое уравнение, которое количественно связывает эквивалентную электропроводность с концентрацией и позволяет вы-числить электрофоретический и релаксационный эффекты. Для бинарных одновалентных водных электролитов уравнение Он загера имеет вид  [c.436]

    Глобулярные белки. Систематические исследования парциальной сжимаемости глобулярных белков проводились в ряде работ [161, 190, 199—201], но только в работе [161] выполнен анализ аддитивности гидратационного эффекта поверхности нескольких белков (рибонуклеазы, лизоцима и миоглобина). Экспериментальные значения приведены на шкале удельных парциальных сжимаемостей (рис. 3.12). Это положительные величины, так как отрицательный гидратационный член АКп с избытком компенсируется большим положительным вкладом собственной сжимаемости /См (релаксационный вклад Кте1 не учитывается в анализе, так как он мал, как было показано в работе [200]). Величина /См/М определена в работах [161, 190] как средняя для всех глобулярных белков, и ее значение 10 м (г-Па) приведено на рис. 3.12. Отклонение экспериментального значения парциальной сжимаемости белка от величины /См характеризует гидратационный вклад, который можно сравнивать с величиной, полученной на основании аддитивных расчетов. [c.60]

    Оценка параметров, характеризующих структуру и молекулярную подвижность граничной воды. Наиболее важной оцениваемой характеристикой является толщина граничных слоев с анизотропной структурой (Х п) или заторможенной подвижностью (Хт). Исследования изменений Avd(Q) при увеличении толщины водных прослоек позволяют заключить, что Хап равна 1—2 слоям молекул (табл. 14.1) [579, 628, 632]. Авторы некоторых работ [634, 635], не учитывая при интерпретации экспериментальных данных по ширине протонных линий ЯМР-воды эффектов неоднородности магнитной восприимчивости, получают A 10—100 слоев. Количество незамерзающей воды по данным ПМР также обычно соответствует Х 1 [636], хотя авторы [627] получили несколько более высокие значения. Так как количество незамерзающей воды в гетерогенных системах может определяться наличием нерастворимых примесей, вычисляемая в этих экспериментах величина к может содержать вклад, связанный с образованием эвтектик [315]. Из релаксационных данных с помощью соотношений (14.12) и (14.13) несложно вычислить XxBf/xF и отсюда оценить xef- По данным большинства авторов (см. табл. 14.1), подвижность связанной воды на 1—2 порядка ниже подвижности объемной воды. [c.240]

    Высокочастотное титроваиие — вариант бесконтактного кондуктометрического метода анализа, в котором анализируемый раствор подвергают действию электрического поля высокой частоты (порядка нескольких мегагерц). При повышении частоты внешнего электрического поля электропроводность растворов электролитов увеличивается (эффект Дебая — Фалькенгагена), поскольку уменьшается амплитуда колебания ионов в поле переменного тока, период колебания ионов становится соизмерим с временем релаксации ионной атмосферы (примерно 10 с для разбавленных растворов), тормозящий релаксационный эффект снимается. Поле высокой частоты деформирует молекулу, по-Л5физуя ее (деформационная поляризация) и заставляет полярную молекулу определенным образом перемещаться (ориентационная поляризация). В результате таких поляризационных эф фектов возникают кратковременные токи, изменяющие электропроводность, диэлектрические свойства и магнитную проницаемость растворов. Измеряемая в этих условиях полная электропроводность высокочастотной кондуктометрпческой ячейки X складывается из активной составляющей >.акт — истинной проводимости раствора — п реактивной составляющей Хреакт — мнимой электропроводности, зависящей от частоты и тппа ячейки  [c.111]

    На основе электростатической теории сильных электролитов Дебай, Гюккель и Онзагер получили выражение для эквивалентной электропроводности предельно разбавленных растворов сильных электролитов. Изменение эквивалентной эле.чтропроводности растворов сильных электролитов с концентрацией электролита объясняется торможением движения ионов в электрическом поле из-за их электростатического взаимодействия. С увеличением концентрации раствора ионы сближаются и электростатическое взаимодействие между ними возрастает. При этом учитываются два эффекта, вызываюш,их электростатическое взаимное торможение ионов электрофоретический и релаксационный эффекты. [c.261]

    Опытные значения электрофоретической подвижности обычно достигают лг5,0-10 м /(с-В), а электрокииетического потенциала до 100 мВ. Эксршриментально определенные значе 1ня подвижности оказываются меньпш расчетных. Следует отметить, что по абсолютному значению величина Иэф одного порядка со скоростью движения ионов в электрическом поле с напряженностью, равной еднпице. Несовпадение экспериментальных и теоретических значений электрофоретической подвижности определяется в основном двумя эффектами, не учтенными теорией Гельмгольца — Смолуховского релаксационным эффектом и электрофоретическим торможением.. [c.224]

    В многокомпонентных активных средах обнаружен эффект зависимости выхода продуктов жидкофазных реакций термоконденсации от энергии активации вязкого течения и температуры стеклования исходной системы. Описаны кинетические явления, связанные с отклонениями от закона действующих масс, вследствие непрерывного изменения состояния системы. Показан общий характер релаксационных про1 ессов различных по природе систем в газофазных реакциях пиролиза. [c.58]

    Последующее молекулярное описание одноосного деформирования неориентированного частично кристаллического полиэтилена характеризует пластическую деформацию волокон, образующих термопласты со сферолитной структурой. Оно может служить иллюстрацией большого разнообразия механизмов деформирования. При деформациях менее 1 % выявляют анизотропные упругие свойства кристаллов (орторомбического) полиэтилена [57] и аморфного материала [53]. При тех же самых условиях имеют место неупругие деформации СНг-групп и сегментов цепей, которые обусловливают низкотемпературные Р-, у- и б-релаксационные механизмы [10, 56]. При больших деформациях (1—5%) происходит дополнительное изменение сегментов цепи, их относительного положения и конформационные изменения (поворот связей). Подробное исследование поведения цепей в аморфных областях было выполнено Петракконе и др. [53]. В кристаллических областях под действием деформаций такого же порядка возникают дислокации и дислокационные сетки (наблюдаемые в ламеллярных кристаллах в виде муаровых узоров). В зависимости от условий внешнего нагружения и типа дислокаций их движение вызывает пластическую деформацию кристалла путем двойникования, смещения плоскостей или фазового перехода орторомбической ячейки в моноклинную. Обширный обзор деформирования полимерных монокристаллов был дан Зауэром и др. [57] и в книге Вундерлиха [3]. Детальный расчет вклада различных структурных элементов и дефектов в деформирование частично-кристаллических полимеров можно найти во многих статьях, из которых здесь приводятся только некоторые [47—62]. Хотя упомянутые выше эффекты обусловливают нелинейность зависимости напряжение—деформация, первоначально существовавшая надмолекулярная организация все еще сохраняется. Подобная деформация называется однородной. [c.41]

    По аналогии с известным понятием о термореологически простом теле моншо высказать суждение о возмолшости влажностно-реологически простого поведения полимеров при изменении их влажности это утверждение будет справедливым прп выполнении двух условий 1) эффект влажности сводится только к изменению скорости релаксационного процесса 2) все члены дискретного спектра времен релаксации изменяются пропорционально одной функции влажности. [c.73]


Смотреть страницы где упоминается термин Эффект релаксационный: [c.105]    [c.336]    [c.123]    [c.123]    [c.127]    [c.272]    [c.282]    [c.328]    [c.461]    [c.537]    [c.111]    [c.262]    [c.102]    [c.215]   
Физическая химия (1980) -- [ c.357 ]

Основы аналитической химии Кн 3 Издание 2 (1977) -- [ c.94 ]




ПОИСК





Смотрите так же термины и статьи:

Высокочастотного переменного поля полем эффект. Релаксационные

Комптона эффект асимметрический релаксационный

Парамагнитные сверхтонкие взаимодействия и релаксационные эффекты в твердых телах

Применение ЭПР и релаксационных эффектов для изучения свободных радикалов в твердых телах (примеры)

Применение релаксационных эффектов для различения радикалов

Релаксационного эффекта влияние

Релаксационного эффекта влияние на диффузию

Эффект анизотропный релаксационный



© 2025 chem21.info Реклама на сайте