Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбционно-хемосорбционные свойства

    СВОЙСТВА АКТИВНОГО ВЕЩЕСТВА ПЛЕНОК ПИНС Адсорбционно-хемосорбционные свойства пленок (ФС4) [c.97]

    Защитные свойства нефтепродуктов могут быть улучшены только с помощью присадок — ингибиторов коррозии, способных к повышению смачивающей способности нефтепродуктов по отношению к металлам в системе нефтепродукт + вода, к торможению анодного, катодного (или одновременно катодного и анодного) процессов электрохимической коррозии и к образованию на поверхности металла, освобожденной от адсорбированной пленки воды, прочных адсорбционно-хемосорбционных защитных пленок. Эта закономерность более подробно рассмотрена в следующем разделе. [c.291]


    Наличие свободных валентностей на поверхности электронных катализаторов определяет, прежде всего, их адсорбционные (хемосорбционные) свойства. При этом возможны два различных механизма процесса хемосорбции. [c.430]

    Адсорбционно-хемосорбционные свойства пленок (ФС4) [c.56]

    Адсорбционно-хемосорбционные свойства пленок [c.83]

    Механизм защитного действия пленки. Механизм защитного действия сформировавшейся пленки ПИНС на поверхности металла определяется следующими факторами [20—22, 34—48] защитными свойствами адсорбционно-хемосорбционных пленок на самой поверхности металла  [c.78]

    Если энергия связи ПАВ с металлом или с уже образовавшимися на металле хемосорбционным или оксидным слоем больще, чем энергия связи молекул ПАВ с молекулами среды, то на металле образуются адсорбционные и хемосорбционные пленки ПАВ. Энергия связи ПАВ с металлом зависит в равной степени как от химического строения, полярности и донорно-акцепторных свойств ПАВ, так и от свойств металла — знака и величины заряда на его поверхности, ее физического состояния. [c.208]

    Адгезионно-когезионные свойства пленок ПИНС непосредственно связаны с их адсорбционно-хемосорбционными и защитными свойствами и определяются 8 методами и 9 показателями (см. табл. 9). [c.105]

    Модель 2. Неингибированные консервационные пластичные смазки. Они защищают металл от коррозии только в толстом слое (более 1 мм). Решающее значение имеют адгезионные и объемные (изоляционные) свойства пленки — скорость диффузии гидратированных ионов металла, газо- и паропроницаемость. Отсутствуют адсорбционно-хемосорбционные слои на металле. Не обладают водовытесняющими свойствами. Имеют место случаи, когда коррозия развивается под слоем пластичной смазки. Использование пластичных смазок этого типа весьма трудоемко и энергоемко при консервации и особенно при расконсервации. Портят внешний вид изделий, малоэффективны, однако выпускаются промышленностью в значительных количествах. [c.181]

    Модель 4. Неингибированные битумные и восковые составы. Силы адгезии больше сил когезии. Энергия адгезионно-когезионного взаимодействия достаточно велика адсорбционно-хемосорбционные слои отсутствуют. Механизм защитного действия близок к модели 2. Защитные свойства всех продуктов этой модели невелики, особенно в тонких слоях. Тем не менее ассортимент изоляционно-защитных продуктов, попадающих под модель 4А, Б, В, Г очень богат и разнообразен. [c.183]


    Адсорбционно-хемосорбционные и защитные свойства пленок [c.233]

    Во всех случаях ингибированные продукты с высокой полярностью, электрической проводимостью, поверхностной активностью на поверхностях раздела, обладающие лучшими проникающими и вытесняющими свойствами, более прочными адсорбционно-хемосорбционными пленками, лучшими защитными и смазывающими свойствами имеют преимущества по уменьшению и предотвращению всех видов износа (см. табл. 38). [c.236]

    В случае дегидроксилирования при повышенных температурах образцов кремнезема, содержащих примеси, адсорбционные и хемосорбционные свойства поверхности становятся еще более сложными. В работах [28, 29, 52, 53] исследовались теплоты адсорбции молекул, способных к сильному специфическому взаимодействию, например триэтиламина (см. рис. 20 и 21) и тетра-гидрофурана, при увеличении степени дегидроксилирования поверхности аэросилогеля, содержавшего около 0,36 вес. % А1, путем повышения температуры обработки в вакууме до 1100° С. При этом наблюдалось образование на поверхности новых центров с очень большой энергией адсорбции. После откачки вблизи 1000° С доля поверхности, приходящаяся на эти центры, составляла около 10—15% всей поверхности аэросилогеля. [c.200]

    До сих нор недостаточно изучено влияние примесей на адсорбционную способность и хемосорбционные свойства поверхности (то, что можно было бы назвать адсорбционным модифицированием ) и связь между этими свойствами и электропроводностью полупроводника. Эти данные были бы полезны для построения теории модифицирования и могли бьи внести свои коррективы в теорию. [c.181]

    Представляло бы интерес исследование влияния различных газов друг на друга имеется в виду изменение хемосорбционных свойств поверхности по отношению к данному газу под влиянием другого газа. Одновременно было бы интересно исследовать изменения каталитической активности полупроводника по отношению к данной реакции под влиянием посторонних газов, вводимых в адсорбционную смесь, хемосорбирую-щихся на поверхности катализатора, но заведомо не принимающих участия в реакции. [c.181]

    Значительно проще с помощью импульсного метода обеспечивается измерение адсорбции кислорода. Экспериментальные данные показывают, что хемосорбция кислорода на многих металлах происходит очень быстро, затем резко замедляется и вскоре достигает насыщения. Величина быстрой хемосорбции соответствует определенному стехиометрическому соотношению, характерному для каждого металла, причем это соотношение не зависит от дисперсности металла, если она не слишком велика. Это дало возможность использовать кислород для определения поверхности железных электродов никелевых и платиновых катализаторов статическим адсорбционным методом. Благоприятные для импульсного хроматографического метода хемосорбционные свойства кислорода были использованы для раздельного измерения поверхности большинства металлов УП1 группы (железа, никеля, рутения, родия, палладия, платины) на носителях Во всех случаях при 25° С происходила необратимая хемосорбция, так что ее величина могла быть [c.218]

    В последние годы к нефтяным маслам различного назначения предъявляют повышенные требования по защитным свойствам. В основе высокого защитного действия лежит способность масел быстро вытеснять воду с поверхности металла, удерживать ее в объеме смазочного материала и образовывать на нем прочные адсорбционные и хемосорбционные пленки, препятствующие развитию электрохимических процессов. Базовые нефтяные масла не способны длительно защищать металлы от электрохимической коррозии. Их защитные овойства улучшают введением 3—5% ингибиторов коррозии (окисленных парафинов и церезинов, нитрованных масел, сульфонатов, сукцинимидов и др.). [c.37]

    Как показали проведенные исследования, регулирование адсорбционных и хемосорбционных процессов взаимодействия в системе связующее-наполнитель с использованием минеральных микродобавок обеспечивает дополнительное снижение окисляемости кокса связующего на 15-25% [3]. При этом оптимальное содержание связующего смещается в область пониженных значений при сохранении уровня вязкопластических свойств масс. [c.165]

    Рабоче-консервационные масла по сравнению с рабочими и чисто консервационными характеризуются более высоким уровнем поверхностньи свойств, пленки рабоче-консервационных масел обладают значительно большими адсорбционно-хемосорбционными свойствами. Этим определяются не только их высокая защитная эффективность в тонкой пленке, но и другие поверхностные свойства противокоррозионные, смазывающие, противоизносные и противозадирные, что достигается сочетанием соответствующих ПАВ. [c.383]

    За норму принимают фг в пределах от 100 до 200 мВ, выше нормы — Ф2>200 мВ, хуже нормы — фг<100 мВ. Как видно из данных табл. 9, лучшими адсорбционно-хемосорбционными свойствами обладают продукты групп Д-1, Шасси, и продукт группы МЛ-2 — Мольвин худшими — продукты группы 3 и 3-РК . [c.101]


    Использование ПИНС-РК для предотвращения или снижения коррозионного растрескивания, локального анодного растворения и водородного охрупчивания весьма эффективно, если эти продукты образуют на металле хемосорбционные пленки, которые не могут быть вытеснены в широком диапазоне потенциалов водой, атомарным кислородом и водородом. В этой связи необходимо учитывать адсорбционно-хемосорбционные свойства ингибиторов коррозии и пленок ПИНС, а также проницаемость этих пленок, в кислых и сверх-кислых средах, т. е. в условиях кислотной коррозии. Целесообразно испытывать плс ки ПИНС при защите ими сталей и сплавов от коррозионного рас трескивания (ГОСТ 9.019—74 и др., а также электрохимическими методами) не только в нейтральных, но и в кислых средах. Большинство ПИНС являются весьма эффективными ингибиторами кислотной коррозии металлов. [c.228]

    Защитные свойства вязких ингибированных композиций связаны с их изоляционной способностью, препятствующей паро- и влагопрони-цаемости, которая, однако, не имеет решающего значения при оценке защиты от электрохимической коррозии пленками смазочного материала. В основном эффект защитного действия определяется поляризационной составляющей, т.е. торможением электрохим 1ческих реакций. Повысить защитную способность ингибированных композиций можно введением в их состав ПАВ, способных вытеснять электролит с поверхности металла, образовывать на поверхности металла адсорбционно-хемосорбционные защитные пленки. Маслорастворимые ПАВ способны только физически вытеснять адсорбированную воду, наличие которой обусловливает развитие электрохимической коррозии. Химически связанная с поверхностью металла вода наряду с кислородом и водородом участвует в формировании хемосорбционно-адсорбционных пленок. [c.173]

    Адсорбционно-хемосорбционные (ФС4) и хемосорбционные (ДФС12) свойства пленок [c.56]

    Ингибиторы коррозии, а так.же жидкие компоненты должны при разделении переходить в сухое вещество верхнего слоя, а грубодисперсные и высокомолекулярные — в сухое вещество нижнего слоя. Затем рассчитывают количество ингибитора коррозии, перешедшего в верхний слой, или сухого вещества верхнего слоя (в % масс.), отнесенное к сумме всех жидких, истинно растворенных или тонкоколлоидных компонентов (сульфонаты, масло, олифа и др.). Это и будет количество не связанного структурой ПИНС активного вещества, и в зависимости от структуры ПИНС оно различно. Чем меньше ингибитора удерживается объемной структурой ПИНС, тем легче образуются на поверхности металла адсорбционно-хемосорбционные слои, что положительно влияет на поверхностные и защитные свойства ПИНС. [c.92]

    Показатель 30. Рассчитывают разницу емкости системы ДС (в мкФ/см ) при 500 и 20 000 Гц. Кроме того, учитывают общую зависимость сопротивления и емкости ячейки от частоты. На рис. 16 эта зависимость приведена для электролита и продукта с оценками хуже нормы (смазка типа ПВК изоляционного действия) норма (продукты типа Мовиль) и лучше нормы (продукты с ярко выраженной адсорбционно-хемосорбционной активностью (типа НГ-222, А, Б). Как видно из рис. 16, для малоэффективных защитных продуктов изоляционного действия ПВК и неингибированных лакокрасочных материалов сопротивление пленки низкое и не зависит от частоты, емкость значительна и резко уменьшается с частотой, т. е. ход кривых в этом случае близок к ходу кривых для чистого электролита, а защитные свойства покрытия зависят т его пористости и влагопроникающих свойств. Для пленок эффективных ПИНС (Мовиль, НГ-222) и ингибированных лакокрасочных материалов картина иная сопротивление пленки возрастает и уменьшается [c.98]

    Механизм действия противокоррозионных присадок несколько различен соединения типа сульфидов и терпенов действуют в основном за счет образования химических серусодержащих пленок, устойчивых к коррозионному разрушению в зоне трения, а соединения типа диалкилдитиофосфатов - главным образом в результате образования многослойных адсорбционно-хемосорбционных пленок. Диалкилдитиофосфаты служат также антиокиолительными присадками. Однако возможно, что для диалкилдитиофосфатов антиокислительные свойства второстепенные, а собственно противокоррозионные свойства, основанные на адсорбции, главные. Этот факт имеет принципиальное значение, так как в отличив от антиокислительных присадок, рабо- [c.31]

    Метод 28 — показатели 35, 36. Величины ф1 и фг характеризуют суммарные адсорбционно-хемосорбционные и адгезионно-когезионные свойства пленок, стойкость к моющим агрессивным растворам [20, 34—48]. Их измеряют на установке ТОНЭР , разработанной для оценки ПИНС. При этом метод имитирует как условия воздействия агрессивного электролита во время эксплуатации автомобилей, так и воздействие моющих растворов во время мойки автомобилей. В методе использована лабораторная установка с рабочей ячейкой (рис. 19). Рабочий электрод в виде цилиндра, изготовленный из Ст. 3, соединен с ротором и опущен в стакан, играющий роль вспомогательного электрода, из нержавеющей стали Х18Н9Т. Электролитическим ключом ячейка соединена с электродом сравнения и подключена к потенциостату П-5827. Для работы выбран агрессивный моющий раствор, содержащий сульфат натрия и сульфонол. (ГОСТ 12389—69) pH раствора доводят до 3 концентрированным бромидом водорода. Наличие сульфонола придает раствору моющие свойства, а ионов 5042-, Вг-, Н+ — агрессивные. Испытание проводят в три стадии первые две стадии оценивают показатели 35 и 36, а третья — абразивостойкость пленок и описана ниже (см. свойства ФСе). [c.100]

    Для большицства ПИНС предпочтительнее использовать гидрофобные, поляризующие, активные, тонкодисперсные наполнители, улучшающие адсорбционно-хемосорбционные, адгезионнокогезионные и защитные свойства пленок, ускоряющие их высы- [c.157]

    Свойства некоторых продуктов, исследованных авторами с целью установления взаимосвязи между их физико-химическими и поверхностными свойствами в системах масло — металл и металл—электролит — масло , адсорбционно-хемосорбционными и защитными свойствами масляных пленок с их антифрикционными, противоизносными, противозадирными свойствами и со способностью этих продуктов снижать различные виды износа приведены в табл. 38 и 39, рис. 47—49. Данные представлены по рабочему маслу (М-Р) для наземной техники о,16 с композицией современных присадок и высоким индексом 7/2 вязкости рабоче-консерваци- онному (М-РК), рабочему  [c.229]

    Иной механизм предполагается в подавлении процессов электрохимической коррозии. Согласно последним исследованиям [19, 23], противокоррозионные присадки — ингибиторы ржавления, относящиеся к водорастворимым поверхностно-активным веществам, тормозят процессы электрохимической коррозии вследствие смачивания поверхности металла и быстрого вытеснения с нее воды. Присадки, в молекулах которых содержатся атомы с неспаренными электронами, действуют в результате образования на металлах прочных адсорбцион-но-хемосорбционных пленок. Взаимодействие с металлом может протекать как электронодонорное или электроноакцепторное в зависимости от свойств функциональной группы. Предложено в связи с этим делить защитные присадки по механизму их действия на доноры электронов, акцепторы электронов и ингибиторы экранирующего действия [10]. Защитные пленки на металле могут образовывать не только водорастворимые поверхностно-активные соединения, но и полярные вещества, растворимые в углеводородах. В этом случае молекула присадки ориентируется полярной группой к металлу, а растворимой в углеводородах частью — к топливу, обра- [c.182]

    Ингибированные масла вызывают поляризацию благодаря хе-мосорбциоиным и адсорбционным эффектам. Защитная эффективность мыльных смазок, содержащих ПАВ и ингибиторы коррозии, может объясняться как адсорбционно-хемосорбцион-ным, так и объемным действием. Превалирование того или иного эффекта зависит от состава и концентрации содержащихся в смазке поверхностно-активных веществ, полярности металла, температуры, механической нагрузки и других факторов. Однако присутствие в смазке ПАВ и даже ингибиторов коррозии еще не означает, что эти вещества обязательно будут проявлять свои поверхностные свойства (рис. 67). [c.324]

    Для выяснения механизма гетерогенных каталитических реакций и создания теории катализа большое значение имеют сведения о хемосорбционных свойствах контактов по отношению к отдельным компонентам реакционной среды, а также к их различным смесям в условиях, близких к условиям протекания реакций. В практике катализа цаиболее распространены процессы с использованием двухкомпонентных смесей. Для изучения адсорбции двухкомнонентных смесей газов и паров применяются различные методы [2, 3, 4, 5, 6], из которых наиболее общим и приемлемым является объемно-весовой метод [2, 5]. Однако наряду с двухкомпонентными реакционными смесями применяются и многокомпонентные системы. Так, например, при синтезе аминов на железных катализаторах используется смесь водорода, окиси углерода и аммиака [1]. Для определения адсорбционных свойств контактов по отношению к тройным смесям газов для установления доли участия каждого из компонентов в суммарном эффекте адсорбции, очевидно, дополнительно к объемно-весовым измерениям необходима третья характеристика. Такой величиной может быть изменение концентрации в газовой фазе одного из компонентов газовой смеси в результате адсорбции. [c.160]

    Переходя к рассмотрению металлов, я хочу прежде всего отметить значительные успехи в методах исследования, позволяющие изучать структуру и адсорбционные свойства очень чистых поверхностей металлов. Об этом свидетельствуют как материалы, обсуждавшиеся на этом Конгрессе, в основном в лекции академика Ринеккера, так и труды Симпозиума по взаимодействию газов с поверхностью, проходившего в декабре 1966 г. в Сан-Диего [9]. Трудно переоценить значение свойств чистых поверхностей металлов, но, используя их в области катализа, необходимо помнить, что опи могут очень сильно отличаться от свойств поверхности металлических катализаторов в стационарном состоянии при протекании каталитических реакций. Таким образом, накопление информации о хемосорбционных свойствах металлов идет по двум расходящимся направлениям, и очень важно найти правильные пути их одновременного использования. [c.446]

    Структура пассивной пленки на сплавах, как и пассивной пленки вообще, была описана и теорией оксидной пленки и адсорбционной теорией. В соответствии с оксидно-пленочной теорией, защитные оксидные пленки формируются на сплавах с содержанием легирующего компонента выше критического, а незащитные — на сплавах ниже критического состава. В случае преимущественного окисления пассивной составляющей сплава, например хрома, защитные оксиды (такие как СГаОз) формируются, только если содержание хрома в сплаве превышает определенный уровень. Эта точка зрения не позволяет делать никаких количественных прогнозов, а тот факт, что пассивная пленка на нержавеющих сталях может быть катодно восстановлена и не соответствовать стехиометрическому составу, остается необъясненным. Согласно адсорбционной теории, в водной среде кислород хемо-сорбируется на Сг—Ре-сплавах выше критического состава, обеспечивая пассивность, но на сплавах ниже критического состава он реагирует с образованием непассивирующей оксидной пленки. Насколько данный сплав благоприятствует образованию хемосорбционной пленки или пленки продуктов реакции, зависит от электронной конфигурации поверхности сплава, особенно от взаимодействия -электронов. Так называемая теория электронной конфигурации ставит в связь критические составы с благоприятной конфигурацией -электронов, обеспечивающей хемосорбцию и пассивность. Теория объясняет природу взаимодействия электронов, определяющую, какой из компонентов придает сплаву данные химические свойства, например, почему свойства никеля преобладают над свойствами меди в медно-никелевых сплавах, содержащих более 30—40 % N1. [c.91]

    На основании изучения объемных и поверхностных свойств маслорастворимых ингибиторов коррозии предложено разделить их на ингибиторы хемосорбционного и адсорбционного (экранирующего) действия. В свою очередь, ингибиторы коррозии хемосорбционного действия подразделяют на ингибиторы анодного действия (доноры электронов) и ингибиторы катодного действия (акцепторы электронов). Ингибиторы-доноры электронов (сульфированные и нитрованные масла и др.) содержат группы с сильным отрицательным суммарным электронным эффектом (N0 , СО, 80зН). [c.371]


Смотреть страницы где упоминается термин Адсорбционно-хемосорбционные свойства: [c.97]    [c.236]    [c.95]    [c.80]    [c.10]    [c.95]    [c.362]    [c.207]    [c.221]    [c.30]    [c.207]    [c.186]   
Рабоче-консервационные смазочные материалы (1979) -- [ c.178 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные свойства



© 2025 chem21.info Реклама на сайте