Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись этилена хлорирование

    Потребление хлора для производства многочисленных продуктов, из которых важнейшими являются окись этилена (через хлоргидрин), хлористый этилен, хлорбензол, хлоруксусная кислота, трихлорэтилен и продукты, получаемые хлорированием ацетилена, достигло громадных масштабов. Так, в 1950 г. общее производство хлорированных парафиновых и олефиновых углеводородов в США достигло около 850 тыс. т. Общее производство всех ароматических полупродуктов, включая стирол (для промышленности синтетического каучука) и фталевый ангидрид, имеет значительно меньшие масштабы. [c.137]


    Поливинил- хлорид 130. .. 170 X 160. .. 340 X 400. .. 570 X Сжигание Хлористый водород, хлорированные углеводороды, углеводороды, окись и двуокись углерода Хлористый водород, бензол Хлористый водород Пропан, этилен, пропилен, ацетилен, окись н двуокись углерода  [c.277]

    На первой стадии происходит гидрохлорирование ацетилена, содержащегося в исходной смеси. Полученный винилхлорид экстрагируется дихлорэтаном, а оставшийся в газе этилен подвергается хлорированию до дихлорэтана. Реакция протекает в жидкой фазе (в дихлорэтане) в присутствии хлорного железа в качестве катализатора. Выделенный путем конденсации дихлорэтан перерабатывается затем в винилхлорид обычным путем, а образующийся хлористый водород используется для гидрохлорирования ацетилена. Процесс удобен также тем, что отходящие газы, содержащие метан, водород, окись и двуокись углерода, могут использоваться как топливо для крекинга исходного бензина и дихлорэтана. Хлорирование и дегидрохлорирование осуществляются под небольшим давлением (4—7 ат). [c.22]

    Этилен СН2=СН2, пропилен СНд—СН=СН2, бутилен СНз— —СНз—СН=СН2, бутадиен (дивинил) СН2=СН—СН=СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропи-,лен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. В настоящее время этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пищевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. стр. 230)  [c.190]

    В Германии этиленхлоргидрин получали непрерывным методом, пропуская в воду одновременно хлор и избыток этилена [34]. Процесс проводили в колоннах, выложенных внутри керамиковыми плитами и затем гуммированных. Не вступивший в реакцию этилен возвращали обратно в процесс, предварительно отмыв от него хлористый водород раствором едкого натра и удалив пары хлорированных углеводородов адсорбцией активированным углем. Выделяющегося при реакции тепла оказалось достаточно, чтобы нагревать до 45° продукты реакции, вытекающие из колонны. Был подобран такой режим процесса, чтобы получить 4—5%-ный раствор хлоргидрина, который без предварительных концентрирования и очистки перерабатывали непосредственно в окись этилена (стр. 188). По сравнению с периодическим методом при проведении непрерывного процесса приходится работать с меньшей степенью превращения, чтобы выдержать на том же уровне количество побочно образующегося дихлорэтана. [c.185]


    Сигналом к прекращению производства ВХ из ацетилена была разработка сбалансированного процесса, основанного на ок-сихлорировании этнлена. Химизм процесса следующий. Первые две стадии такие же, как в этилен-ацетиленовом процессе прямое хлорирование этилена и дегндрохлорирование получающегося ДХЭ  [c.254]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    Приводились [177, 178] и более низкие величины энергии активации, близкие к 10—12 ккал/моль. Обычно считают, что углекислота, образующаяся одновременно с окисью этилена, частично получается в результате окисления последней, а частично независимым путем из этилена [177]. Это подтверждается при использовании в этилене [179]. Имеется сообщение [180], что углекислота может уменьшать скорость образования окиси этилена, тогда как ацетальдегид или хлорированные этилены [174, 181] увеличивают ее выход. На окисях меди и хрома окись этилена окисляется очень быстро подобные же результаты получены [182] для смеси окись магния — окись хрома. Куммер нашел [183], что на различных гранях монокристаллов серебра реакция протекает с различными начальными скоростями, однако спустя некоторое время эти скорости на различных гранях снова уравниваются, так как наблюдается некоторый процесс спекания (синтеринг). Кроме того, оказывается, что скорость реакции одинакова и на пленках, на поверхности которых первоначально находились различные грани [184]. Твигг [177] исследовал хемосорбцию реагентов на серебре и нашел, что этилен едва ли хемосорбируется, а хемосорбция кислорода — медленная и активированная. Он изучил также скорость реакции между этиленом и хемосорбированным кислородом и показал, что скорость образования окиси этилена пропорциональна доле 0о поверхности, покрытой кислородом, а скорость образования углекислоты пропорциональна 0 он считает, что скорость реакции определяется взаимодействием между хемосорбированным кислородом и молекулой этилена из физически адсорбированного слоя. Как и другие, Твигг полагает, что при нормальном окислении смеси этилена с кислородом скорость реакции лимитируется скоростью хемосорбцин кислорода. Любарский [185] измерил электропроводность пленок серебра на стеклянных нитях и показал, что хемосорбция кислорода вызывает переход электронов от серебра к хемосорбированным частицам, так что электропроводность пленки уменьшается. Однако в условиях реакции, приводящей к образованию окиси этилена, электропроводность близка к наблюдаемой для восстановленной пленки это подтверждает, что хемосорбция кислорода является медленной стадией. Наконец, некоторые изме- [c.334]

    Таким образом, содержание хлора в катализаторе можно регулировать, меняя концентрации в реагирующей газовой смеси хлорированного углеводорода, насыщенного углеводорода и диоксида углерода. Кроме того, соединения щелочноземельных металлов сохраняют хлориды, из которых хлор переходит на серебро, и понижают чувствительность серебра к перехлориро-ванию. Щелочноземельные металлы облегчают ингибитору управление конверсией. Катализаторы всех промышленных процессов содержат некоторое количество щелочных или щелочноземельных добавок. Кроме реагентов и продуктов — этилена, кислорода, окиси этилена, диоксида углерода и воды — в реагирующих газах всегда присутствуют газообразные углеводороды и ингибиторы, как правило хлорированные углеводороды. Поэтому любая теоретическая или эмпирическая кинетическая модель должна объяснять действие большинства этих компонентов. Из них наименее важна вода, затем окись этилена и, возможно, сам этилен, если его концентрация обеспечивает насыщение поверхности. [c.239]


    При разработке условий хлорирования и создании конструкции хлоратора большое внимание уделялось тому, чтобы этот вредный побочный процесс свести к минимуму. В качестве исходного сырья для хлорировапия применяется метано-водородная фракция, являющаяся отходом цеха разделения нирогаза, следующего состава (объемн. %) метан — 72 водород — 23 этилен — 2 окись углерода — 0,5 кислород — 0,5 азот — 2,0. [c.329]

    Этиленгликоль 0Н—СНг — СН2 получают или гидролизом этиленхлоргидрина, который в свою очередь получают хлорированием этилена в водной среде СЬ + НОН = НСЮ + НС1 НСЮ +СН2 =СНг- --> НОСН2 — H2 I, или же его получают из окиси этилена гидратацией при 100° и при давлении 10 атм в присутствии H2SO4 окись же этилена получают из этилен-хлоргидрина взаимодействием его со щелочью по реакции [c.113]

    Хлористый водород, пропан, этилен, пропилен, ацетилен, окись углерода, двуокись углерода Ароматические углеводороды, те-тралин, нафталин Хлористый водород, фосген, бензол, толуол, ксилол, нафталин Хлористый водород, хлорированные углеводороды, высшие спирты, альдегиды, окись углерода, двуокись углерода [c.246]


Смотреть страницы где упоминается термин Окись этилена хлорирование: [c.256]   
Общая химическая технология органических веществ (1966) -- [ c.181 , c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Хлорирование этилена

Этилен окись



© 2025 chem21.info Реклама на сайте