Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жирные кислоты синтезы их иэ нитрилов

    В ходе этого процесса образуется ряд летучих жирных кислот (молочная, уксусная, пропионовая и др.), но главным субстратом при синтезе метана является уксусная кислота. Метан-образующие бактерии могут также синтезировать метан из СОг и Нг. Оптимум pH для них тот же (6—7), что и для бактерий первой группы, и это важно, поскольку нарушение баланса образования и потребления кислот приведет к падению pH, если система не обладает достаточными буферными свойствами. Всякое падение pH по этой причине преимущественно сказывается на активности метанобразующих бактерий, что вызывает дальнейшее закисление среды и прекращение образования метана. С этим можно бороться, добавляя известняк или аммиачную воду, но при внесении ионов аммония следует соблюдать осторожность. Метанобразующие бактерии могут использовать аммонийные ионы как источник азота, но при высоких концентрациях они ингибируют их рост. К числу других веществ и соединений, способных ингибировать процесс, относятся кислород и окисленные соединения, такие, как нитрат и нитрит, сульфиды, цианиды, свободные ионы металлов (меди, цинка или никеля), галогены, формальдегид и сероводород. Система чувствительна также к резким скачкам температуры. [c.77]


    Образование этих низкомолекулярных нитропарафияов первоначально объяснялось ХэссоМ и его сотрудниками [4] тем, что благодаря дальнейшему окислению нитросоединений по месту присоединения нитрогруппы образуется жирная кислота. Жирная кислота далее нитруется ло наиболее способному к реакции -положению, что приводит к образованию а-нитрокарбоновой кислоты, которая затем теряет углекислоту и переходит при этом в низкомолекулярный н итропарафлн /сравни синтез первичных питропарафинов по Кольбе)  [c.283]

    АЦЕТОНИТРИЛ (нитрил уксусной кислоты, цианистый метил) Hз N—бесцветная жидкость с характерным запахом (эфирным), т. кип. 81,6 С, смешивается с водой и другими органическими растворителями. А. применяют как растворитель многих неорганических и органических веществ как исходный материал для синтеза важных промышленных продуктов, для разделения смеси жирных кислот, удаления смол, фенолов и красителей из углеводородов нефти и др. А, токсичен, предельно допустимая концентрация в воздухе около 0,002%. [c.36]

    Одновременное образование нитрила и изонитрила можно объяснить двойственным характером цианид-иона (Гоулд, 296). Практически эта реакция может служить методом синтеза нитрилов кислот с нечетным чис->лом атомов углерода из нормальных бромистых алкилов с четным числом углеродных атомов, получаемых из природных жирных кислот. Например, так получают нитрил н-тридекановой кислоты из бромистого н-додецила [c.228]

    Если в биохимии и имеются аналогичные явления и процессы, которые могли бы быть нам полезны, то, конечно, их можно встретить в области обмена липидов и углеводов, который все более интенсивно и глубоко изучается. Мы знаем, что в обмене липидов главная роль принадлежит ацетилкоферменту А. Эта основная единица, коль скоро она уже синтезирована, действует как первичный донор в реакциях ацетилирования и как акцептор ацетильных групп, образующихся в процессе обмена липидов. Недавно обнаружен белок, служащий переносчиком ацильной группы [25]. Получены данные, что синтез, окисление и восстановление высокомолекулярных жирных кислот с четным числом углеродных атомов происходят таким образом, что растущая углеродная цепь никогда не освобождается, оставаясь связанной с белком-иереносчиком. Руководствуясь этими фактами, мы можем предсказать, что вслед за начальной стадией восстановления сульфата в сульфит и нитрата в нитрит будет происходить образование промежуточных продуктов, связанных с белком. Дальнейшее восстановление этих промежуточных продуктов — их включение в аминокислоты и другие многочисленные соединения серы и азота, входящие в состав живой клетки,— будет происходить в соответствии с законами сохранения энергии химических связей и с общими закономерностями переноса грунп. [c.286]


    Незадолго до первой мировой войны начинает складываться, а в последние годы получает большое развитие другая отрасль промышленности органического синтеза —основной, или тяжелый, органический синтез. Зто — производство основных, важнейших органических вешеств, пренмуш,ественно жирного ряда, и простых по строению спиртов (метилового, этилового и др.), галогенопроизводных (дихлорэтан, хлористый этил, хлористый винил и др.), альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон п др.), карбоновых кислот (муравьиная, уксусная кислоты, высшие жирные кислоты) и их производных (сложные эфиры, уксусный ангидрид, нитрил акриловой кислоты, или акрилонитрил, и др.), диеновых углеводородов и их производных (бутадиен, изопрен, хлоропрен и др.), нитропроизводных парафинов (например, нитрометан) и других производных. [c.254]

    Длительное время химики пытались, подобно нитрованию ароматического ядра, осуществить введение нитрогрупп в парафины или жирную цепь ароматических соединений, но эти попытки не имели успеха. Концентрированная азотная кислота и даже нитрующая смесь при низких температурах не оказывали никакого воздействия на насыщенные углеводороды, а при повышенных температурах окисляли их до углекислого газа и ос-моляли. Азотная кислота слабой концентрации не действовала на насыщенные углеводороды и нри высоких температурах. Синтезы жирных нитросоединений поэтому производились косвенными методами и приводили к низким выходам продуктов  [c.387]

    Связь бора с углеродом в различных типах борорганических соединений имеет довольно широкий диапазон прочности. Как обычно, отрыв первого радикала происходит легче, чем последующих, и поэтому в соединениях типа НВХа связь В—С прочнее, чем в полных борорганических соединениях. Естественно, что реакции преобразования радикала К без его отрыва от атома бора известны именно на примере борорганических кислот типа КВ(0Н)2. В жирном ряду эти реакции совершенно не изучены. Обычная способность к реакциям замещения в ароматическом ряду сохраняется и у арилборных кислот. Хотя эти реакции не имеют ничего специфического с точки зрения методики, кроме необходимости работать в мягких условиях, чтобы не разорвать связи С—В, они все же будут рассмотрены в этой книге, так как получаемые в результате этих преобразований нитрофенил-, аминофенил-, оксифенил-, карбоксифенилборные кислоты, а также нитро-, амино-, бром-, карбоксипроизводные толилборных кислот представляют собой интересные соединения, могущие быть использованными для синтеза других металлоорганических соединений (ртути, таллия и, возможно, ряда других металлов), содержащих перечисленные ароматические радикалы. [c.226]


Смотреть страницы где упоминается термин Жирные кислоты синтезы их иэ нитрилов: [c.102]    [c.360]    [c.221]    [c.263]    [c.77]    [c.199]    [c.178]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.880 ]




ПОИСК







© 2025 chem21.info Реклама на сайте