Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность ароматическом ряду

    Согласно теории замещения в ароматическом ряду направление атаки кольца электрофильным агентом характеризуется фактором селективности [c.176]

    Присутствие в нефтях значительных количеств углеводородов с пятичленными циклами, а также трудности анализа этих углеводородов обычными спектральными методами побудили к разработке специального метода исследования этих углеводородов. Сущность метода заключается в превращении циклопентановых углеводородов в циклогексановые путем расширения цикла за счет а-углеродных атомов боковых цепей. Ценность этого метода заключается в том, что после расширения кольца (или колец) вновь образованные углеводороды с 6-членными циклами подвергаются каталитическому дегидрированию и превращению в углеводороды ароматического ряда, анализ которых методами молекулярной спектроскопии, как уже указывалось, является уже значительно более простой операцией. Кроме того, этим путем можно отделить циклопентановые углеводороды от углеводородов мостикового тппа, не способных к образованию в результате этих реакций углеводородов ароматического ряда. Таким образом, метод селективной изомеризации фактически должен называться методом селективной изомеризации с последующим дегидрированием . [c.317]


    На долю триметилбензолов приходится около 35% общего количества ароматических углеводородов бензольного ряда, образующихся при каталитическом риформинге, но пока они используются в качестве химического сырья незначительно [64]. Перспективы использования полиметилбензолов определяются прежде всего возможностью окисления их в три- и тетракарбоновые кислоты ароматического ряда и их ангидриды. Эти полифункциональные мономеры пригодны для получения термостойких полимеров и полиэфиров, а также низколетучих пластификаторов. Интересной может быть также высокая селективность замещения полиметилбензолов, в особенности имеющих симметричную структуру дурола и мезитилена. 100%-пая селективность замещения достигается при получении производных изодурола, пренитола и, естественно, пентаметилбензола. Псевдокумол дает 80% 1,2,4,5-заме-щенного и 20% 1,2,3,4-изомера, при замещении гемимеллитола получают 95% 1,2,3,5-изомера [107]. Правда, высокая селективность замещения еще не определяет возможности крупнотоннажного производства соответствующих производных. Приходится считаться и со стерическими препятствиями, которые неблагоприятно влияют на реакционную способность получаемых веществ. [c.88]

    Учитывая то обстоятельство, что полициклические ароматические углеводороды с короткими боковыми цепями обладают низким индексом вязкости, большой склонностью к окислению кислородом с образованием смолистых веществ, указанным выше путем можно отделить от нефтяной масляной фракции нежелательные, низкоиндексные углеводороды. На этом основан весьма важный в технологии производства масел метод очистки их при помощи избирательного растворения нежелательных углеводородов в соответствующих -(селективных) растворителях. Осно-вой принципа очистки при помощи селективных растворителей является свойство молекул последних ассоциироваться с молекулам углеводородов, преимущественно ароматического ряда, с образованием комплексов нерастворимых при данной температуре в очищенном масле. [c.74]

    Реакции замещения в ароматическом ряду протекают с различной степенью избирательности, селективности в некоторых случаях возникает преимущественно один изомер, в других — смесь примерно равных количеств всех возможных изомеров. Это побудило Ингольда ввести количественную меру селективности, названную им фактором парциальной скорости. При определении этого фактора сопоставляется скорость замещения у данного соединения С НдХ по отношению к скорости замещения водорода в бензоле. [c.245]


    В табл. 1 приведены данные структурно-группового химического состава легких масел пиролиза различных нефтепродуктов до и после их селективного гидрирования. Непредельные углеводороды легкого масла смолы пиролиза в основном состоят из соединений ароматического ряда, и общее содержание в них цикленов и алкенов колеблется в пределах [c.36]

    Метод с применением второго растворителя был внедрен еш е-в 1930 г. Л. Эделяну в производство смазочных масел. Этот метод основан на способности сернистого ангидрида растворять углеводороды ароматического ряда, а второго растворителя — снижать вязкость масел. Для увеличения селективности растворителя масла разбавляют смесью толуола и ксилолов, что позволяет понизить температуру экстракции до —10° С и даже до —15° С. [c.153]

    Таким образом, предполагается, что значения р и г в ряду металлоорганических соединений не служат критерием отклонения структуры переходного состояния от л- или а-комплекса, а являются мерой степени жесткости замкнутой структуры образующегося циклического переходного состояния. Иными словами, в отличие от других реакций электрофильного замещения в ароматическом ряду, уменьшение селективности в ряду реакций элементоорганических соединений не связано с приближением структуры переходного состояния к структуре л-комплекса, хотя можно полагать, что нарушение я-электронной системы при реализации замкнутого переходного состояния действительно меньше, чем в случае образования переходного комплекса со структурой Уэланда. Что касается значения г, которое по определению представляет собой отношение прямого сопряжения заместителя с реакционным центром к тому, которое учитывается при использовании тр, естественно, что по мере от- [c.320]

    В ароматическом ряду бромиды реагируют в эфире, а соответствующие хлориды в этих условиях не изменяются. Это различие позволяет проводить реакции селективно. В качестве растворителя часто используют тетрагидрофуран даже для бромпроизводных, не содержащих других атомов галогенов. [c.223]

    Обсуждался вопрос о связи позиционной селективности пятичленных гетероциклов с их реакционной способностью [319]. Как известно, в ароматическом ряду менее активным субстратам свойственна более высокая селективность. Это правило не [c.202]

    При окислительном дегидрировании молекулярный кислород, выводя из реакционной зоны водород и сдвигая равновесие реакции вправо, снимает термодинамические ограничения. Высокую селективность процесса способен, однако, обеспечить лишь гетерогенный, избирательно действующий катализатор он может существенно снизить оптимальную температуру, затормозить побочные пиролитические реакции, сократить долю процессов изомеризации углеродного скелета и миграции двойной связи. Как отмечено выше, окислительное дегидрирование катализируют соединения многих металлов, особенно ванадия, молибдена, висмута, кобальта, серебра, железа, меди. При дегидрировании парафинов в олефины и олефинов в диены наиболее эффективны висмут-молибденовые и висмут-вольфрамовые катализаторы, промотированные добавками соединений фосфора, а также разного рода ферриты. Для получения винильных производных ароматического ряда рекомендуют применять смеси окислов кобальта, вольфрама и ниобия в разных сочетаниях, окись алюминия, промотированную солями и окислами железа. [c.61]

    Реакция окислительного цианирования на практике пока не реализована. Перспективы использования ее для синтеза непредельных нитрилов алифатического и ароматического ряда, алкилпроизводных бензонитрила и других малодоступных органических цианидов вполне очевидны.. Однако ее механизм нуждается в глубоком изучении и для нее необходимо создать более активные и более селективные катализаторы. [c.110]

    Обращаясь к интересующей нас области гетероароматических соединений, мы должны констатировать, что восстановление щелочными металлами в жидком аммиаке не приобрело здесь такого значения, как в ароматическом ряду. В большинстве работ по восстановлению пятичленных гетероциклических соединений, в частности тиофена, отмечается невысокая селективность процесса [82]. [c.276]

    Активные угли селективно адсорбируют ароматические углеводороды, красители, хлоруглеводороды, фенолы, нитропроизводные и ряд других соединений. Стоимость высококачественных промышленных активных углей высока, поэтому их используют многократно. Активный уголь регенерируют либо промывкой соответствующим растворителем при наличии в сточных водах ценных компонентов, либо пиролизом в парогазовой среде при 750—900°С. Максимальные потери угля —5—10%  [c.96]

    Одним из условий эффективности селективной очистки масляного сырья является не только четкость отделения парафино-нафтеновых углеводородов от ароматических и смол, но и избирательность растворителя по отношению к ароматическим углеводородам разной структуры. На основании данных [7—9] по избирательной способности к ароматической части сырья, включающей углеводороды разной степени цикличности, исследованные растворители располагаются в следующий убывающий ряд нитробензол >фурфурол> фенол. По отношению к группам компонентов фенол более избирателен, чем фурфурол, т. е. при экстракции фурфуролом парафино-нафтеновая часть менее четко отделяется от ароматической. Это объясняется тем, что избирательная способность растворителя к ароматическим углеводородам разной структуры обусловлена значением дипольного момента молекул растворителя (фурфурол имеет больший дипольный момент, чем фенол), в то время как избирательность к группам компонентов нефтяного сырья определяется КТР сырья в растворителе (для фенола эта температура ниже). [c.60]


    К сожалению, попытка систематизации различных по природе каталитических систем в единый по активности ряд по реакции алкилирования в целом не увенчалась успехом. Активность, стабильность и селективность катализаторов алкилирования находится в сложной взаимозависимости от многочисленных факторов, таких, как температура, давление, природа.и структура алкилирующих агентов и т. д. Например, серная кислота — хороший катализатор для алкилирования ароматических углево- [c.17]

    Таким образом, в реакции переалкилирования наблюдается параллелизм между способностью электрофильного агента всту пать во взаимодействие с бензолом и толуолом и направлением атаки в то или иное положение толуола. Это — отличительная особенность переалкилирования по сравнению с рядом реакций ароматического замещения, характеризующихся низкой субстратной и одновременно высокой позиционной селективностью. [c.185]

    Никель, как и металлы платиновой группы, обладает высокой гидрирующей активностью, что при низких температурах и повышенных давлениях водорода обусловливает протекание реакций гидрирования ароматических и гидрокрекинга нафтеновых углеводородов. Металлы платиновой группы на -у А аОз катализируют гидродеалкилирование толуола при 350—550 °С и атмосферном давлении. Их активность снижается в ряду Rh > 1г > Os > Pd, Ru, Pt. На Pt, Pd, Rh, Os селективность деалкилирования превышает 90%. Кажущиеся энергии активации составляют (в кДж/моль) на Ru — 121, Rh — 125, Pd — 155, Os — 71, ir — 109, Pt — 138. [c.110]

    Кристаллизацию и растворение можно использовать для разделения благодаря разной растворимости близкокипящих полициклических ароматических углеводородов. Высокие температуры плавления ряда веществ облегчают отделение низкокипящих примесей и получение чистых веществ. Поэтому для очистки широко используют перекристаллизацию, кристаллизацию в сочетании с прессованием для отделения жидких веществ, кристаллизацию — плавление [4], кристаллизацию с добавлением растворителя, смещающего равновесие системы. В связи с значительными различиями в растворимости компонентов, входящих в смеси кристаллов, часто используют экстрактивное растворение ( выщелачивание ) легко растворимых компонентов. Общим недостатком этой группы методов оказывается невысокая селективность разделения, обусловленная сопряженной растворимостью. [c.296]

    В настоящее время производится большое число малотоннажных продуктов, относящихся к полициклическим ароматическим углеводородам [7]. Общими для всех этих технологий являются повторная ректификация фракций каменноугольной смолы и последующая переработка полученных узких фракций, включающая многократную перекристаллизацию, селективное растворение получаемых веществ, а в ряде случаев химическую обработку. Широко используют смеси растворителей, а также последовательную обработку сырья разными растворителями. Во всех этих схемах низок выход целевых продуктов, значительны потери растворителей, применяются малоэффективные периодические процессы. Ниже рассмотрена технологически рациональная организация производства некоторых веществ, потребность в которых может быть значительной. [c.312]

    Результаты селективной дегидроизомеризации ряда алкил-цпклопентанов приведены в табл. 82. Хорошо видно, что в образующихся ароматических углеводородах сохраняются особенности строения (число заместителей) исходных циклопентанов. Следует, правда, отметить, что на бифункциональных катализаторах расширение цикла за счет метильной группы протекает быстрее, чем в присутствии бромистого алюминия, что несколько пскажает селективность всего превращения. [c.321]

    Применяемые на современных нефтеперерабатывающих заводах процессы очистки весьма разнообразны. При очистке ряда нефтепродуктов, особенно смазочных масел, для достижения требуемых свойств применяют не один, а ряд последовательных процессов, каждый из которых предназначен для удаления определенной группы примесей. Например, при деасфальтиза-ции удаляют смолистые и асфальтовые соединения селективная очистка обеспечивает удаление смол и части ароматических углеводородов при депарафинизации выделяют из продуктов твердые парафины очистка глинами улучшает цвет масла и т. д. [c.91]

    Рассматриваемые здесь нитросоединения представляют собой соединения ароматического ряда, присутствие в этих соединениях фенильных групп обусловливает хорошую растворимость в них также и углеводородов. Поэтому удельные объемы удерживания углеводородов в данном случае больше, чем для нитрилоэфиров это можно использовать прежде всего для разделения низкокипящих углеводородов, которые при применении нитрилоэфиров иногда выходят из колонки слишком быстро. Исключительная селективность позволяет, например, отделять ароматические соединения от алифатических, разделять между собой ароматические соединения с различными заместителями, а также разделять низкокипящие галогензамещенные углеводороды и хлорсиланы. [c.209]

    Более селективным кажется кислот-но-основной ферментативный катализ (такой распространенный в химии in VIVO), который активирует одну молекулу фенола как электрофильную, другую — как нуклеофильную. Далее все идет по классической схеме электрофильного замещения в ароматическом ряду, к которому даже нейтральные фенолы весьма склонны (схема 9.6.4). [c.256]

    Модификация Лихросорба НР8 трибутилфосфатом и другими производными фосфора использована в работе [287] для изменения величин удерживания и селективности разделения ряда ароматических кислот и фенолов. [c.179]

    Успешное применение метода ГЖХ для анализа нефтяных углеводородов позволило исследователям получить более полное представление о количественном рапределении индивидуальных углеводородов ароматического ряда, содержащихся в легких и средних фракциях нефти. Однако концентраты ароматических углеводородов, выделенные из нефтяных фракций, как правило, лредставляют собой чрезвычайно сложные смеси, что обусловлено наличием большого числа изомеров с близкими свойствами, и поэтому подбор условий для их газохроматографического разделения часто представляет собой задачу определенной трудности. Наиболее важное значение для эффективного разделения аро.ма-тических углеводородов имеет выбор подходящей неподвижной >1 идкой фазы, а также составление композиций из двух и более жидких фаз, обладающих благодаря комплексным свойствам высокой селективностью. [c.154]

    Эффективными промоторами окисления акролеина кислородом являются триалкил- или триарилфосфаты. В присутствии стеарата N1 и трибутилфосфата акролеин окисляется в акриловую кислоту в бензоле при 65 °С и 6 кгс/см с конверсией 28% и селективностью 87,5% [125]. Промоторами при окислении акролеина кислородом в жидкой фазе, могут быть и ароматические нитросоединения, например, возможно окисление при 50 °С и 5 кгс/см в гексане в присутствии нитробензола [126, 127]. При 75 °С смесь пропан — пропилен окисляется с образованием окиси пропилена или акриловой кислоты [128]. Предложен целый ряд катализаторов для окисления акролеина в бензоле молибдат Сн (при 50 °С и давлении кислорода 10 кгс/см получают 67% акриловой кислоты) молибдат Т1 (62%), молибдат Со (64%), смесь молибдатов [129], иод [130]. Возможно окисление под давлением и без добавки катализатора (при 25—30 °С и давлешш кислорода 5 кгс/см конверсия 32%) [131]. [c.157]

    Образование значительных количеств жета-замещенных продуктов при алкилировании толуола и других монозамещенных бензолов можно объяснить высокой реакционной способностью атакующего реагента. Поскольку бромирование является примером достаточно мягкой реакции замещения, в этом случае сильно проявляются различия между бензолом и толуолом, а также между мета- и пара-положениями в толуоле. Нитрование менее селективно, чем бромирование изопропилирование значительно менее селективно, чем нитрование. При алкилировании толуола образуется 30% лета-изомера. Более того, при этой реакции становятся незначительными различия между толуолом и бензолом. Обзор реакций замещения в ароматическом ряду позволяет провести параллель между селективностью реакций с бензолом и толуолом, с одной стороны, и между мета- и пара-положениями в толуоле — с другой. В обоих случаях селективность уменьшается с увеличением реакционной сиособности атакующего агента [2]. Данные табл. 4 иллюстрируют эти положения. [c.70]

    Жидкими кристаллами называют такие вещества, которые с повышением температуры переходят из твердой фазы сначала в смектическую, нематическую или холестерическую и только после этого в жидкую фазу. Находясь в нематической фазе, такое соединение селективно разделяет геометрические изомеры ароматического ряда. Примеры соответствующих разделений даны в табл. 4.8. [c.128]

    Азосоединения как исходные вешества для восстановления в гидразины использовались исключительно в ароматическом ряду, поскольку алифатические азосоединения раньше получали окислением гидразосоединений. Однако, в связи с установлением возможности получения азосоединений изомеризацией моноалкилгидразонов [57] становится целесообразным препаративное гидрирование их в мягких условиях, когда гидразоны и гидразиды восстанавливаются плохо, или когда необходимо предотвратить восстановление других содержащихся в молекуле группировок. Удобным способом селективного преврашения азогрупп в гидразо- может служить восстановление диимидом HN=NH, генерируемым из гидразингидрата [5  [c.65]

    При помощи метода селективного гидрирования удалось доказать, что масса непредельных углеводородов крекинг-керосина состоит из олефинов ароматического ряда, поскольку в продуктах гидрирования содержались в основном ароматические углеводороды. Так, во фракциях 200— 250 и 250—300° до гидрирования содержалось по 17% олефинов и соответственно 20 и 31% ароматических углеводородов, а после полного гидрирования олефинов содержание ароматических углеводородов повысилось до 36 и 46%. [c.93]

    Установлено опытом, что при очистке остаточных масел одним растворителем необходимо перед экстракцией удалить асфальт, осаждая его пропаном. В Дуосол-ироцессе [87 ] обе цели осуществляются одной операцией. Пропан, который поступает в один конец системы, осаждает асфальт, избирательно растворяет более иарафинистые компоненты и перемещает их в рафинатную часть системы. Смесь фенола и крезола избирательно растворяет асфальтовые смолистые и ароматические компоненты и перемещает их в экстрактную часть системы. Процесс обычно проводится при 43—77° С.2 Выбор растворителя зависит от ряда факторов, таких как возможность применения для обработки масла, гибкость по отношению к различным маслам, стоимость, токсичность, возможность последующего удаления, растворимость, селективность и легкое разделение фаз. Ниже приводятся данные по мировому производству растворителей для очистки масел в 1950 г. в тыс. сутки [89] [c.282]

    Разработанные и внедренные в ряде стран процессы гидрирования масляных дистиллятов и деасфальтизатов дают возможность в одном каталитическом процессе достичь результатов, получаемых сочетанием глубокой селективной очистки и гидроочистки. Процесс обычно осуществляют под давлением 15— 30 МПа, при температуре 340—420°С, скорости подачи сырья 0,5—1,5 ч и объемном отнощении водородсодержащего газа к сырью 500— 1500. В качестве катализаторов можно применять катализаторы гидроочистки или более активные — сульфидновольфрамовый, ни-кельвольфрамовый на окисноалюминиевом носителе (алюмони-кельвольфрамовый) и др. Для повышения активности применяют промотирующие добавки, придающие катализатору кислотные свойства, — двуокись кремния, галоиды. Введение такой добавки способствует более интенсивному гидрированию азотсодержащих соединений и конденсированных ароматических углеводородов. Благодаря применению высокого давления и активных катализаторов реакции гидрирования протекают весьма глубоко — практически все компоненты, удаляемые при селективной очистке в виде экстракта, превращаются в целевые продукты. Гидрированием под высоким давлением в промышленном масштабе производят базовые высококачественные масла различного назначения индустриальные, турбинные, моторные, гидравлические, веретенные. В зависимости от вида сырья выход масел с одинаковым индексом вязкости при гидрировании равен или несколько выше, чем при селективной очистке. Вырабатываемые масла по эксплуатационным свойствам превосходят масла селективной очистки, особенно по стабильности и, следовательно, по сроку службы. [c.308]

    На одном и том же катализаторе селективность процесса за-виспт от ряда факторов, в том числе от относительной реакционной способности органических веществ или отдельных функциональных групп и от их способности адсорбироваться поверхностью катализатора. Часто оба фактора влияют параллельно или первый из них превалирует над вторым. Вследствие этого, например, двойные связи арилолефинов всегда гидрируются в первую очередь по сравнению с ароматическим ядром, а альдегидные группы — быстрее кетонных. Имеются, однако, примеры, когда реакционная способность к хемосорбции изменяется в противоположных направлениях. Тогда вещество, лучще сорбируемое, вытесняет с поверхности катализатора другой реагент или промежуточный продукт и гидрируется в первую очередь. Этим объясняется, что ацетилен и его гомологи можно селективно гидрировать в соответствующие олефииы, несмотря на более высокую реакционную способность образующихся олефинов. Меньщая сорбируемость целевых продуктов последовательных превращений (например, спиртов при гидрировании кислот и карбонильных соединений, аминов при гидрировании нитрилов н т. д.) позволяет провести реакцию с лучшей селективностью и более высоким выходом. [c.470]

    Так как после реакции проводится обычно каталитическое дегидрирование вновь образовавшихся углеводородов с шестичленными циклами, то само собой разумеется, что для селективной изомеризации нефтяных фракций необходимо использовать только смеси углеводородов, которые уже были подвергнуты дегидрированию с целью удаления находящихся там углеводородов гекса-метиленового ряда. Перед изомеризацией исследуемые углеводороды должны быть тщательно очищены от следов ароматических или непредельных углеводородов, а также перекисей. Точность предложенного метода зависит от правильного выбора значения Котв-При выборе этой величины необходимо учитывать различные скорости превращения цикланов, зависящие не только от молекулярного веса исходных углеводородов, но также и от количества заместителей и от их расположения в кольцах. [c.319]


Смотреть страницы где упоминается термин Селективность ароматическом ряду: [c.227]    [c.346]    [c.348]    [c.353]    [c.218]    [c.554]    [c.308]    [c.1001]    [c.120]    [c.185]    [c.213]    [c.151]   
Введение в электронную теорию органических реакций (1965) -- [ c.465 , c.471 ]




ПОИСК





Смотрите так же термины и статьи:

Электрофильное замещение в ароматическом ряду селективность замещающего агента



© 2025 chem21.info Реклама на сайте