Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение и состав живой клетки

    Все клетки, даже самые простые, имеют мембраны. Мембраны отделяют внутреннее содержимое клетки от окружающей среды, поэтому нарушение целостности мембраны приводит к гибели клетки. Мембраны не только сохраняют молекулы веществ, входящих в ее состав, но и реализуют специфику химического состава клеточной цитоплазмы. С помощью специальных устройств мембрана избирательно выбрасывает из клетки ненужные вещества и поглощает из окружающей среды необходимые. Главные компоненты биологических мембран живых организмов — это сложные липиды. Следует обратить внимание на то, что все сложные липиды, описанные в разд. 9, имеют характерное строение для поверхностно-активных веществ, т. е. две большие неполярные углеводородные группы и полярную часть, способную к образованию водородных связей. Таким образом, эти молекулы способны самопроизвольно агрегировать, образуя в воде бислойные структуры, составляющие основу мембраны. В состав мембранного бислоя входят и молекулы белков, и свободные жирные кислоты. Последние встраиваются в бислой так, что их жирные хвосты погружены внутрь, а полярные группы во внешнюю среду и контактируют с ионами натрия с внешней, а с ионами калия с внутренней стороны бислоя (см. рис. 73). Биологические мембраны не только регулируют обмен веществ в клетке, но и воспринимают химическую информацию из внешней среды с помощью специальных рецепторов. Биологические мембраны обеспечивают иммунитет клетки, нейтрализуя чужие и свои вредные вещества. Они также способны передавать информацию соседним клеткам о своем состоянии. Наконец, совсем недавно было обнаружено, что многие белки-ферменты могут работать только внутри мембраны, запрещая, разрешая или сопрягая ферментативные процессы. [c.407]


    Каждый отдельно взятый биохимический процесс, каждое отдельно изучаемое вещество не является чем-то необычным, но то, что представляет собой совокупность процессов, только одними химическими законами не исчерпаешь. Убедительным аргументом в пользу утверждения, что жизнь представляет собой специфическую и не сводимую к простейшим форму движения материи, может служить удивительный принцип единства биохимического плана строения организмов. Мы недаром все время говорили об организмах и клетках вообще, не указывая название живого существа, взятого в качестве примера. Как это ни странно, но состав всех важнейших соединений и даже типы характерных реакций и строение молекул ферментов одинаковы или сходны не только у животных, но и у растений и даже бактерий. [c.5]

    К числу наиболее важных химических элементов, составляющих основу органического вещества клеток, относятся углерод, азот, водород, кислород, фосфор, сера. Органическое вещество бактерий представлено белками, углеводами, жирами и другими группами органических соединений. Белки — наиболее важная составная часть живого организма. С ними связано протекание основных физиологических процессов. Белки являются пластическим материалом, из которого построены клетки, могут использоваться в качестве энергетического материала, особенно при неблагоприятных условиях, входят в состав ферментов. В клетках микроорганизмов содержится большое количество белков, отличающихся по химическому составу и строению. Они обусловливают специфичность микроорганизмов и их изменчивость под воздействием окружающей среды. В молодых клетках содержится большее количество белковых соединений. Особую роль в синтезе белков выполняют нуклеи- [c.212]

    Глава 1. Строение и состав живой клетки [c.10]

    Тем не менее почтенный Кольбе оказался неправ, и стереохимия стала важнейшим разделом науки о веществе. Особенно возросло ее значение после того, как выяснилось, что пространственное строение молекул играет решающую роль в работе всех механизмов живой клетки. Именно по этому признаку биокатализаторы — ферменты — сортируют молекулы, вовлекая в реакции только те из них, которые стыкуются с поверхностью фермента. Почти все аминокислоты, входящие в состав белков, могут существовать в виде пар оптических антиподов. Однако реальные белки состоят всегда из так называемых -изомеров. На 1)-изомеры организм реагирует, как на чужеродные молекулы, и не усваивает их. В обычных же химических реакциях оптические изомеры неотличимы, так же как не отличаются их температуры кипения или плавления, плотность и другие осязаемые свойства. Поэтому их разделение всегда было задачей выс- [c.79]


    Не зная химии, нельзя понять процессы, которые происходят в живом организме. Химия изучает состав и строение веществ, находящихся в клетках, реакции, протекающие между этими веществами в живом организме, и изменения, происходящие в клетках и тканях при заболеваниях. Разобраться в таких сложных явлениях можно, только начав с самых простых химических [c.9]

    Строение клетки определяется теми веществами, из которых образованы стенки клетки, представляющие ее каркас, и веществами, находящимися внутри клеток. Целлюлоза, описанная в предшествующей главе, является наиболее важной составной частью стенок клеток растений. В живых организмах основными конструктивными материалами являются белки более того, и внутренние части клеток состоят в значительной степени пз белков. Так, красная кровяная клетка состоит из тонкой мембраны, в которой заключена среда, состоящая из воды (60%), различных веществ (5%) и гемоглобина (35%) — белка, содержащего железо, и имеющего молекулярный вес около G8 ООО гемоглобин обладает свойством обратимо связывать кислород. Именно благодаря этому свойству кровь соединяется с большим количеством кислорода в легких и переносит его к тканям, обеспечивая таким образом возможность окисления питательных веществ и веществ, входящих в состав организма. Ранее уже упоминалось, что простейшие формы материи, способные к самовоспроизводству — вирусы, состоят главным образом из нуклеиновых кислот. [c.480]

    Ферменты, как и все белковые вещества, имеют асимметрическое строение, что обусловливает стереохимическую специфичность их действия. В связи с этой особенностью ферментов и катализируемых ими реакций находится то общее явление, что основные биогенные соединения, входящие в состав живой клетки и живого организма, являются оптически активными веществами. [c.37]

    Высокомолекулярные соединения подразделяют на природные и синтетические. К важнейшим природным полимерам относятся белки и полисахариды. Белки являются основой всего живого, они составляют существенную часть живой клетки и обеспечивают ее жизнедеятельность. Белки входят в состав кожи, мышц, сухожилий, нервов и крови, а также ферментов и гормонов, содержатся. во многих растительных и животных продуктах молоке, яйцах, зернах пшеницы, бобах и др. К белкам относятся широко применяемые в технике желатина, козеии, яичный альбумин. Из нерастворимых белков наиболее известны шерсть и шелк, отличающиеся волокнистым строением. [c.307]

    Упорядоченность структур живого организма и слаженность реакций обмена веществ не является результатом случайной комбинации атомов и молекул в статистическом смысле в процессе их теплового движения. Они — результат обусловленного биологическими закономерностями эволюционного развития организмов, в ходе которого должно быть обеспечено воспроизведение строго определенного типа биологических структур и обмена веществ со всеми структурными и химическими особенностями. Так, биосинтез белковой молекулы совсем не является реализацией одной из многих миллионов возможностей расположения аминокислотных остатков. Все детали строения белковой молекулы (состав, последовательность чередования остатков и т. д.) определяются совокупностью структурных и кинетических условий биосинтеза (природа и концентрация участвующих в биосинтезе аминокислот, ферментов, витаминов, нуклеиновых кислот, их пространственное распределение в клетке и т. д.), т. е. типом структур и процессов обмена веществ, свойственных данному организму. [c.68]

    Живые клетки с плазмой и ядром лишь в небольшом количестве участвуют в строении древесины. Они входят в состав ближайших к камбию слоев, а также в состав древесной паренхимы и паренхимы сердцевидных лучей. Живые клетки древесной паренхимы и паренхимы сердцевидных лучей сохраняют в зимний период запасы крахмала и жиров, потребляемых весной, при образовании на дереве новой листвы [c.7]

    Связь между нуклеотидами представляет собой фосфодиэфир-ную связь между гидроксильными группами сахаров, смежными с нуклеозидами. В зависимости от строения входящего в состав кислоты сахара различают два основных типа нуклеиновых кислот — дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК). Во всех живых клетках встречаются как ДНК, так и РНК- Экстракты нуклеиновых кислот в значительной степени неоднородны, особенно экстракты РНК. Отсутствие чистых препаратов гомогенной нуклеиновой кислоты препятствовало выяснению ее точного строения. [c.468]

    Уникальный состав живых организмов и упорное сохранение строения и механизма действия основных химических машин клетки как будто указывают на действие неких универсальных законов лишь в таких системах, которые включают не вообще молекулы , а именно какие-то определенные виды их. С другой стороны, эволюция от простейших организмов к сложным отнюдь не просто коррелирует с усложнением химических узлов клеток, а связи между организмом и средой очень затрудняют индивидуализацию объекта изучения и делают изолированное рассмотрение живой системы принципиально недопустимым. По этим причинам рассмотрим проблему, соблюдая большую осторожность в окончательных выводах и оценив возможности термодинамики по отношению к биогенезу, обсудим свойства динамических структур и их значение в общем процессе эволюции, завершившемся на некотором этапе формирования живых систем. [c.18]


    Дан и автор данной статьи начали совместную работу в Калифорнийском университете над разрешением этих вопросов. Прямой путь к цели представлялся весьма простым. Для этого нужно было выделить в чистом виде и в достаточном количестве митотический аппарат из делящихся клеток и изучить его химический состав и строение. Другие части клетки — ядра, хромосомы, митохондрии — в свое время с успехом выделяли и изучали. Но в данном случае задача была более сложной. Митотический аппарат — структура временная. Он появляется в клетке лишь тогда, когда клетка делится, и в процессе деления все время изменяется. Он не лежит свободно в веществе клетки, а тесно связан с этим последним. И что хуже всего — он крайне неустойчив в своей живой [c.201]

    Сгорание пищи в организме осуществляется в клетках. Требуемый для этого кислород обеспечивается за счет дыхания и у многих живых организмов переносится особой жидкостью — кровью. У высших животных кровь состоит из плазмы и взвешенных в ней красных и белых кровяных телец. Красные кровяные тельца эритроциты, придающие крови ее окраску, состоят на 79% из сложного белка гемоглобина. В состав этого белка входит красный краситель гем, присоединенный к бесцветному белку глобину, из группы глобулинов. Состав гемоглобина у различных животных сильно различается, но строение тема всегда одинаково. Из гема можно получить другое соединение — гемин (стр. 270). Анатому Тейхману впервые удалось выделить кристаллы гемина и, тем самым, найти надежный метод распознавания крови. Эта реакция позволяет обнаружить малейшие следы крови и успешно применяется в судебной экспертизе при расследовании преступлений. [c.269]

    Ранее предполагалось, что свойства биологических мембран во многом определяются структурой именно липидного бислоя, так что общая замкнутая фаница живой клетки подобна мыльному пузырю. За последние 20 лет в результате детального исследования строения и подвижности компонентов, входящих в состав биологических мембран, произошли существенные изменения в представлениях о структуре и функциях клеточной мембраны. Функциональное значение липидного бислоя оказалось значительно шире, чем значение гидрофобной перегородки между внутренним пространством клетки и внешней средой. [c.110]

    Исследования воздействия излучения на живую клетку насчитывают значительно более долгую историю, чем изучение его действия на синтетические полимеры. С точки зрения благополучия человечества и интересов науки первая область действительно более важна. Но обе эти области знания базируются на одних и тех же основных принципах, связаны, по-видимому, с одними и теми же основными реакциями и фактически представляют собой одно целое. И здесь и там задача заключается в том, чтобы выяснить, как происходят при облучении сшивание полимерных цепей, их деструкция и ряд других реакций. В живой клетке мы имеем дело главным образом с молекулами протеинов и нуклеиновых кислот. Строение и состав этих полимеров в общем виде нам известны, но наиболее важные вопросы до сих пор ускользают от нашего понимания. До настоящего времени нам неизвестно (за исключением единственного случая с инсулином) расположение структурных единиц — аминокислот и нуклеозидов. Еще меньше мы знаем о том, как действует на них излучение и каким образом инициированные излучение.м ре акции вызывают в организме явление лучевой болезни, стимулируют разрушение тканей и их рост (может иметь место и то и другое) и мутации генов. Непонятным и весьма важным является вопрос о том, как малые дозы облучения, недостаточные для того, чтобы вызвать заметные эффекты в большинстве полимеров in vitro, могут создавать в клетке или в организме в целом большие изменения, приводящие к их гибели. Эти вопросы приобрели большое значение уже с момента открытия в 1895 г. рентгеновских лучей и в 1896 г. радиоактивности (Веккерель) [c.8]

    Среди неорганических кислот и оснований слабых электролитов намного больше, чем сильных. Почти все органические кислоты и основания также относятся к слабым электролитам. Особенно разнообразны по строению и свойствам слабые электролиты, входяш ие в состав клетки или являюш,иеся субстратами и продуктами жизнедеятельности растений и животных. Особую роль в живой природе играют аминокислоты, представляющие собой амфотерные электролиты. [c.106]

    Высшие растения состоят из огромного числа клеток, определенным образом скрепленных друг с другом окружающими их клеточными стенками. Многие характерные свойства растений прямо или косвенно связаны с наличием этих клеточных стенок. Состав и внешний вид клеточных стенок непосредственно определяются тем, к какому типу принадлежит данная клетка и каковы ее функции. Вместе с тем основные принципы построения всех клеточных стенок поразительно сходны жесткие волокна целлюлозы погружены в матрикс, содержащий множество поперечных сшивок и состоящий из таких полисахаридов, как пектины и гемицеллюлозы, а также из гликопротеинов. Благодаря такому строению первичная клеточная стенка обладает большим запасом прочности при растяжении и способна пропускать лишь молекулы относительно небольшого размера. Если растительную клетку, лишенную клеточной стенки (протопласт), поместить в воду, то она осмотическим путем наберет воду, набухнет и лопнет. В то же время живое содержимое клетки, заключенное в оболочку, набухает и давит на последнюю, в результате чего возникает давление, известное под названием тургорного. Тургор строго регулируется и жизненно необходим как для увеличения размеров клетки, так и для механической жесткости молодого растения. [c.398]

    Чтобы понять всю сложность исследований, проводимых учеными-биохимиками при изучении структурно-функциональной организации живых объектов, в качестве иллюстрации приведем лищь один пример, поясняющий строение и основы жизнедеятельности простейшей бактериальной клетки Es heri hia соН (в дальнейшем сокращенно — Е. соН). Клетка Е. соИ (рис. В.З) имеет весьма скромные размеры длина — 3, а диаметр — 1 мкм, ее масса приблизительно 6 10 г, две трети которой составляет вода. Остальное вещество клетки образовано белками, свободными аминокислотами, нуклеиновыми кислотами, жирами и углеводами. Клетка состоит из 40 млн больших и средних молекул, участвующих вместе с малыми молекулами в 2—5 тыс. типов химических процессов, многие из которых протекают в 20 — 30 стадий. В клетке содержится около 10 тыс. рибосом, на которых непрерывно синтезируется несколько тысяч типов белков, причем каждая рибосома собирает в среднем одну молекулу белка за 1 с. Сборка представляет собой многостадийную операцию, во время которой несколько сотен аминокислот сшиваются в определенном порядке за счет образования пептидных связей, и включает стадии подбора аминокислот, расстановки их по местам, удаления молекулы воды в процессе образования пептидных связей. Поэтому одновременно в клетке содержится около миллиарда аминокислот, из которых только 1 % входит в состав белков, а остальные находятся в работе. Основная информация о химической организации клетки записана в ДНК буквами такой записи являются триплеты азотистых оснований. В рассматриваемой нами клетке молекулы ДНК содержат 2—5 млн триплетов, т. е. до 15 млн оснаваний, расположенных в строго определенном порядке (для сравнения одна молекула ДНК клетки человека содержит приблизительно 3 млрд оснований). [c.28]

    Биологическая химия — наука о химическом строении и функциях веществ, входящих в состав живой материи, и их превращениях в процессах жизнедеятельности. Совокупность этих превращений в постоянной взаимосвязи с окружающей средой обеспечивает функционирование живых организмов в условиях сбалансированности процессов синтеза и распада веществ в клетках и тканях. Главной задачей биохимии является идентификация основных закономерностей биохимических процессов, вьюснение взаимосвязи между структурой и функциями биомолекул, участвующих в реакциях клеточного метаболизма. [c.4]

    В клетках, составляющих живое вещество, содержатся особые высокомолекулярные нуклеиновые кислоты, связанные с белком, видимо, водородными связями. В течение последних десятилетий были изучены состав и строение нуклеиновых кислот и установлена их роль в биосинтезе белка. Ядра клеток содерл<ат дезоксирибонуклеиновую кислоту (ДНК), анализ продуктов гидролитического расщепления которой показал, что это слол ное вещество, содерлощее 1>-дезоксирибозу, фосфорную кислоту и смесь веществ гетероциклической структуры — производных пурина — аденина и гуанина и производных пирами-дина — тимина и цитозина. В плазме же клеток содержатся рибонуклеиновые кислоты (РНК), в составе которых обнарул<ены /З-рибоза, фосфорная кислота и гетероциклы — аденин, гуанин, цитозин и урацил (вместо тимина). [c.264]

    Гликоген (животный крахмал) имеет тот же состав, что и крахмал растений по строению подобен анилопектину (25 000 90 000 глюкозных остатков). Гидролизуется аналогично крахмалу. Гликоген выполняет ту же функцию в живых организмах, что крахмал в растениях. Все жизненные процессы сопровождаются и энергетически обеспечиваются биологическим расщеплениеи этого полисахарида, приводящим к образованию (+)-молочной кислоты. Гликоген содержится во всех клетках живого организма, наиболее богаты им печень и мышцы. [c.511]

    Молекулярный вес выделенных до настоящего времени нуклеиновых кислот (по данным Зигнера) не менее 1 млн. Согласно современным представлениям, каждая пара цепей нуклеиновых кислот соединена водородными связями между nypинoвы m заместителями г образованием палочкообразной двойной спирали (винтовая линия). Каждое основание в одной цепи соответствует определенному основанию в другой цепи. В живом организме водородные связи между обеими цепями при определенных условиях (например, при делении клетки) разрываются и каждая отдельная цепь вследствие необходимости специфической эквивалентности между входящими в ее состав основаниями становится матрицей для создания из элементарных звеньев цепи противоположного строения. Такой направленный синтез, по-види>юму, позволяет считать, что по крайней мере часть заключенных в хромосомах наследственных признаков связана с нуклеиновыми кислотами. Характерное для живого организма создание молекул различных белков также должно протекать по соответствующему матричному механизму. Значительный вклад в химию нуклеиновых кислот внес Тодд. Однако окончательное выяснение состава и строения нуклеиновых кислот — задача еще не разрешенная вследствие многообразия возможных структур, но очень важная как для понимания биологических процессов, так и для изучения структуры белков. [c.97]

    Ну, а какова же роль других веществ Сейчас во многом это не является д,- Я науки секретом. Полисахариды— запасы горючих веществ , которые обеспечивают необходимой энергией прохождение различных реакций в протоплазме. Жиры и жироподобные вещества, кроме того, что служат энергетическим резервом, являются также частью клеточной струк-турт>1. Эти вещества входят в состав различных оболочек, в том числе и клеточной оболочки, строение которой будет разобрано ниже. Немаловажную роль играет и вода. Она создает, пожалуй, одно из главных условий, при которых. может сунтествовать живая к,тетка, а стало быть, и ее протоплазма. Начнем хотя бы с того, что питательные ветцества и кислород, необходимые. тля протекания жизненно важных реакций об.мена веществ, доставляются в клетку всегда [c.157]


Смотреть страницы где упоминается термин Строение и состав живой клетки: [c.253]    [c.2]    [c.3]    [c.549]    [c.57]    [c.56]    [c.56]    [c.312]    [c.21]    [c.211]   
Смотреть главы в:

Основы энзимологии -> Строение и состав живой клетки




ПОИСК







© 2025 chem21.info Реклама на сайте