Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Закон сохранения энергии. Химическая энергия

    Тепловой баланс служит основой прп расчете тепловых, диффузионных н химических процессов. Для составления о] о необходимо определить количество тепла, вносимого в аппарат и выходящего из аппарата, причем согласно закону сохранения энергии приход и расход тепла должны быть равны  [c.22]

    Закон сохранения энергии. Вторая часть общего принципа сохранения материи и движения явилась основанием для формулировки Ломоносовым в 1760 г. закона сохранения энергии. Этот закон был экспериментально подтвержден в 1842 г., когда Роберт Майер определил эквивалентные соотношения между различными видами энергии. Очевидно, что применение закона сохранения энергии имеет смысл при рассмотрении процессов, происходящих в замкнутых системах. В частности, для химических реакций закон сохранения энергии выразится следующим образом. Энергия системы, включаюш й вещества, вступившие в реакцию, равна энергии системы, включающей вещества, образовавшиеся в результате реакции. [c.8]


    Закон сохранения энергии. Химическая энергия [c.14]

    ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ. ХИМИЧЕСКАЯ ЭНЕРГИЯ [c.15]

    Метод статистических ансамблей Гиббса нашел применение в области неравновесной статистической механики и неравновесной термодинамики [43]. Процессы переноса в многокомпонентной жидкости, поведение системы частиц с внутренними степенями свободы, релаксационные процессы, химические реакции в однородной среде и многие другие процессы допускают эффективное математическое описание с единых позиций па основе законов сохранения энергии, импульса и числа частиц статистического ансамбля [43—45]. [c.68]

    Такое математическое описание представляет собой систему уравнений, выражающих для выбранных процесса и аппарата законы сохранения массы и энергии — материальные балансы по отдельным химическим веществам, балансы тепла и кинетической [c.77]

    Планетарная модель атома достаточно наглядно представляла строение атома. Пользуясь этой моделью, можно было объяснить некоторые свойства химических элементов, например способность одних атомов образовывать только положительно заряженные ионы, а других — только отрицательные. Однако планетарная модель атома находилась в противоречии с законами классической электродинамики, согласно которым вращающийся вокруг ядра электрон должен излучать энергию в виде электромагнитных волн. В соответствии с законом сохранения энергии излучение энергии электроном должно неизбежно сопровождаться уменьшением его скорости и электрон неминуемо должен упасть на ядро, в результате чего атом в виде планетарной системы должен перестать существовать. Иначе говоря, атомы должны излучать энергию в виде непрерывного, сплошного спектра и погибать как таковые. [c.45]

    Открытие фотосинтеза (1771) связывают с именем английского химика Дж. Пристли. Он наблюдал, что зеленые растения исправляют воздух, испорченный горением горючих тел и дыханием животных. В последующем ученые разных стран выполнили много исследований с целью познания процесса фотосинтеза. Важный вклад в изучение фотосинтеза сделал К. А. Тимирязев. Он показал, что фотосинтез осуществляется в строгом соответствии с законом сохранения энергии энергия солнечного света поглощается хлорофиллом и передается им на обеспечение химических реакций, в итоге которых из двуокиси углерода и воды образуются органические вещества. В результате преобразования энергия солнечного света накапливается в виде потенциальной энергии образующихся веществ. [c.121]


    Параллель между открытиями законов сохранения н превращения энергии, с одной стороны, и — вещества,— с другой, имеет глубокую основу. Понятие атома по отношению к веществу сыграло такую же роль, какую сыграло понятие энергии по отношению к движению. Если в понятии энергии воплотились мера и закон превращения одной формы движения в другую, то благодаря конкретизации понятия атома в такой же степени удалось раскрыть меру и закон превращения вещества из одной его формы, представленной определенным химическим соединением, в другую. [c.192]

    Основной материал первых шести глав перестроен и преподносится в более логической и легче усвояемой последовательности. Хотя эти главы формально не отделены от остальной части книги, в действительности они составляют единый учебный цикл, где вводятся качественные представления химии об атомах и молях, стехиометрии, теплоте реакций, газовых законах и молекулярно-кинетической теории, химическом равновесии и кислотно-основном равновесии. Эти главы были вновь продуманы и переписаны одним из авторов как единое целое, с включением большего числа примеров и упражнений, которые даются в конце каждой главы. Представление о моле, правила составления химических уравнений и общие представления о стехиометрии теперь вводятся в первых двух главах, что позволяет студентам своевременно подготовиться к проведению лабораторных работ. В то же время стехиометрия, которая может показаться одним из скучнейших разделов химии, а также понятие о теплоте реакций представлены как иллюстрации к одному из важнейших физических принципов-закону сохранения массы и энергии. Длинная, но важная глава [c.9]

    Понятие энергии можно определить как способность производить работу. Все живые организмы можно рассматривать как работающие машины, постоянно нуждающиеся в притоке энергии. Это необходимо им для того, чтобы продолжать работать и, таким образом, поддерживать свою жизнь. Энергия не исчезает и не создается вновь, а из одной формы переходит в другую (закон сохранения энергии). Формы энергии могут быть самые разнообразные химическая, тепловая, электрическая, световая или звуковая. В качестве простого примера перехода энергии из одной формы в другую можно привести горение спички, при котором в спичечной головке происходит трансформация химической энергии в тепловую, световую и звуковую [c.253]

    Итак, энергия диссоциации молекулы С1 эквивалентна лишь пяти миллионным частям массы электрона. Химические реакции обычно сопровождаются энергетическими эффектами в несколько электронвольт, тогда как ядерные энергии относятся к диапазону миллионов электронвольт. 1 МэВ на молекулу эквивалентен 96,5 млн кДж моль , что находится далеко за пределами энергии всех химических реакций. Это объясняет, почему в химических реакциях можно пользоваться двумя независимыми законами сохранения-массы и энергии. Взаимные превращения этих свойств материи в химических реакциях неразличимы. В отличие от этого для ядерных реакций взаимные превращения массы и энергии-дело совсем обычное здесь следует пользоваться более общим законом сохранения массы и энергии. В любой ядерной реакции сумма энергии и произведения массы на величину (с-скорость света) для всех реагирующих частиц и их окружения не изменяется в процессе реакции. [c.410]

    Все химические превращения подчиняются законам термодинамики. Первый закон, называемый законом сохранения энергии, гласит, что для любого химического процесса общая энергия системы и ее окружения всегда остается постоянной. Это означает, что энергия не исчезает и не возникает вновь, так что если какая-либо химическая система приобретает энергию, то такое же количество энергии должно изыматься из ее окружения, и наоборот. Энергия, следовательно, может перераспределяться, переходить в другую форму или претерпевать оба этих превращения, но она не может исчезать. [c.373]

    Исходя из закона Гесса, представлялось вполне вероятным, что закон сохранения энергии равно применим и к химическим, и к физическим процессам. И действительно, дальнейшие обобщения показали, что законы термодинамики, вероятнее всего, проявляются в химии точно так же, как и в физике. [c.109]

    Аналитический метод построения математической модели состоит в аналитическом описании объекта управления системой уравнений, полученных в результате теоретического анализа физико-химических явлений ка основе законов сохранения энергии и вещества, В этом случав математическая модель содержит уравнения материального и энергетического (теплового) балансов, термодинамического равновесия системы и скоростей протекания отдельных процессов, например, химических превращений, массопередачи, теплопередачи и т,д. [c.12]

    Ниже будут подробно описаны некоторые модели химических реакторов. Все они основаны на фундаментальных законах сохранения массы и энергии. Эти законы приводят к моделям в виде дифференциальных уравнений, каждое из которых содержит первые производные по времени и первые или вторые производные по координатам (в зависимости от геометрии реактора и от физического механизма процесса). Численное решение этих уравнений явилось значительным вкладом в понимание свойств химических реакторов. Однако такая информация полезна, но недостаточна. Инженеру необходимо иметь возможность описать набор решений для некоторой области граничных условий или параметров. В принципе, такие результаты может дать и численное решение, но на практике оказывается, что эти расчеты требуют слишком много машинного времени. Поэтому полезно иметь сведения о так называемой структуре решения. Ясно, что аналитические или качественные методы и методы численного решения не являются взаимоисключающими. В конечном счете качественные оценки облегчают расчеты на ЭВМ, и наоборот. [c.13]


    Закон сохранения массы и энергии в покоящейся системе означает, что они могут превращаться внутри системы (т. е. выступать в различных формах), но совокупности их остаются неизменными. Рассмотрим сначала такую систему, в которой не происходят химические реакции. Если в системе имеется несколько компонентов к и только одна фаза (ф = 1), то, согласно закону сохранения массы, сумма масс всех компонентов должна быть равна массе всей системы т  [c.45]

    Важнейшей формой энергии в химической технологии является теплота. В промышленных процессах теплообмен всегда должен быть рассчитанным. Если в системе основная часть энергии потребляется в тепловой форме, то вместо закона сохранения энергии с небольшой погрешностью к этой системе можно применить закон сохранения теплоты. Отсюда логически следует, что тепловой баланс является простейшей формой энергетического баланса. [c.48]

    В основу любого техно-химического расчета положены два основных закона природы 3 а к о и сохранения веса (массы) вещества и закон сохранения энергии. На первом из этих законов базируется всякий материальный, на втором — всякий энергетический, (В том числе и тепловой баланс. [c.3]

    В обычных химических или физических превращениях энергия может переходить из одной формы в другую, но не может исчезать или появляться (закон сохранения энергии). Масса также не может ни уменьшаться, ни увеличиваться в химических реакциях (закон сохранения массы). [c.338]

    Каждое химическое уравнение символизирует собой законы сохранения массы и энергии нри химических реакциях, которые могут быть объединены в следующей уточненной формулировке. Суммарные масса и энергия объектов, вступивших в реакцию, всегда равны суммарной массе и энергии продуктов реакции. Среди исходных обьектов и нродуктов химических реакций могут быть, очевидно, не только вещества, но и излучение энергии. [c.13]

    Первый закон термодинамики непосредственно связан с законом сохранения энергии. Он позволяет рассчитывать тепловые балансы различных процессов, в том числе и химических реакций. [c.180]

    Представим себе, что система имеет три степени свободы термическую, химическую и механическую, тогда выражение закона сохранения энергии будет иметь вид [c.19]

    Процессы химической технологии связаны с разнообразными физическими и химическими явлениями. Однако большинство этих процессов характеризуется сравнительно ограниченным числом физических законов. Применение основных законов физики к изучению процессов химической технологии составляет теоретическую основу курса Процессы и аппараты . Так, на законах сохранения массы и энергии основаны материальный и энергетический балансы. Для большинства процессов весьма важное значение имеют законы, характеризующие условия равновесия процессов, а также законы, описывающие изменения в системах, не находящихся в равновесии. [c.19]

    В основу энергетического баланса положен закон сохранения энергии, согласно которому в замкнутой системе сумма энергий всех видов постоянна. Частным и наиболее распространенным в химическом производстве видом энергетического баланса является тепловой баланс приход тепла в данной технологической операции равен расходу тепла в ней, что записывается в форме уравнения теплового баланса [c.89]

    Строго говоря, теплота, выделяемая или поглощаемая в результате химического превращения, является своеобразным реагентом или продуктом химической реакции. Поэтому для соблюдения закона сохранения и превращения энергии количество теплоты, сопровождающее химическую реакцию, должно быть включено в ее уравнение. Уравнения химических реакций, в которых приводятся значения тепловых эффектов, называются термохимическими. [c.45]

    ПО всех расчетах, связанных с физическим или химическим пре-вращением вещества, используются основные законы сохранения массы и энергии. Формулировка этих законов приводится во многих учебниках по химической технологии например, они рассмотрены очень подробно в монографии Берда, Стюарта и Лайтфута . При изучении химических реакторов указанные законы чрезвычайно важны они будут постоянно применяться в этой книге. [c.19]

    ЭНЕРГИЯ — общая количественная мера различных видов движения, взаимодействия и превращения материи ее главные разновидности, или формы механическая, тепловая, электромагнитная, химическая, гравитационная, ядерная одни виды энергии могут превращаться в другие в строго определенных количественных соотношениях при всех превращениях энергии общее количество ее не изменяется закон сохранения энергии — один из основных законов естествознания. [c.409]

    Энергетический баланс. Этот баланс составляют на основе закона сохранения энергии, согласно которому количество энергии, введенной в процесс, равно количеству выделившейся энергии, т. е. приход энергии равен ее расходу. Проведение химико-технологических процессов обычно связано с затратой различных видов энергии — механической, электрической и др. Эти процессы часто сопровождаются изменением энтальпии системы, в частности, вследствие изменения агрегатного состояния веществ (испарения, конденсации, плавления и т. д.). В химических процессах очень большое значение может иметь тепловой эффект протекающих реакций. [c.16]

    В статье Основные формы движения Энгельс анализирует философский смысл закона сохранения энергии. Рассматривая энергию как меру изменения формы движения, он отмечает, что ...термин энергия отнюдь не дает правильного выражения всему отношению движения ибо он охватывает, только одну сторону его — действие, ноне противодействие (стр. 60). Энгельс указывает, что механические (молярные) движения на земле вследствие необратимости (трения) замерли бы, если бы они не восстанавливались в итоге за счет солнечного излучения. На ряде аналогичных примеров Энгельс показывает, что существует определенная полярность (противоположность) в проявлении различных видов энергии. В связи с этим гельмгольцов-ское понятие запаса рабочей силы (энергию тяжести, химического сродства) Энгельс часто заменяет, расширяя его содержание понятием притяжение , а кинетическую энергию и внутреннюю энергию тела —.понятием отталкивания как основных форм движения. В этом смысле Энгельс пишет ...процесс существования какой-нибудь солнечной системы представляется в,виде взаимодействия притяжения и отталкивания, в котором притяжение получает постепенно все больший и больший перевес благодаря тому, что отталкивание излучается в форме теплоты в мировое пространство... (стр. 54). [c.48]

    Если в биохимии и имеются аналогичные явления и процессы, которые могли бы быть нам полезны, то, конечно, их можно встретить в области обмена липидов и углеводов, который все более интенсивно и глубоко изучается. Мы знаем, что в обмене липидов главная роль принадлежит ацетилкоферменту А. Эта основная единица, коль скоро она уже синтезирована, действует как первичный донор в реакциях ацетилирования и как акцептор ацетильных групп, образующихся в процессе обмена липидов. Недавно обнаружен белок, служащий переносчиком ацильной группы [25]. Получены данные, что синтез, окисление и восстановление высокомолекулярных жирных кислот с четным числом углеродных атомов происходят таким образом, что растущая углеродная цепь никогда не освобождается, оставаясь связанной с белком-иереносчиком. Руководствуясь этими фактами, мы можем предсказать, что вслед за начальной стадией восстановления сульфата в сульфит и нитрата в нитрит будет происходить образование промежуточных продуктов, связанных с белком. Дальнейшее восстановление этих промежуточных продуктов — их включение в аминокислоты и другие многочисленные соединения серы и азота, входящие в состав живой клетки,— будет происходить в соответствии с законами сохранения энергии химических связей и с общими закономерностями переноса грунп. [c.286]

    Энергетический баланс составляют на основе закона сохранения энергии, в соответствии с которым в замкнутой системе сумма всех видов энергии постоянна. Обычно в химико-техно-логических процессах составляется тепловой баланс. Применительно к тепловому балансу закон сохранения энергии может быть сформулирован следующим образом приход теплоты в данном цикле производства должен быть точно равен расходу ее в этом же цикле. При этом должна быть учтена вся теплота, подводимая в аппарат и выделяющаяся (поглощающаяся) в результате химической реакции или физического превращения теплота, вносимая каждым компонентом, как входящим в проиесс или аппарат, так и выходящим из него, а также теплообмен с окружающей средой. [c.70]

    Закон сохранения веса можно рассматривать как частный случай закона сохранения силы или движения. Естественно, что вес вызывается особым видом движения материи и нет основаншт отрицать возможность нри образовании атомов элементов перехода этого движения в химическую энергию или иную форм движения... Если бы известный нам элемент разложился пли образовался новый, то это явление сопровождалось бы потерей или приращением веса. Этим я до известной степени считаю возможным объяснять различие химической энергии различных эле- [c.83]

    Таким образом, специфика конкретного сложного химического процесса существенно зависит от величины его скорости. Подчиняясь законам сохранения энергии и возрастания энтропии в целом (потенциальность в большом), локально реакция может быть свободной от ограничений второго начала (псевдопотенциальность в малом). Следующая механическая аналогия, заимствованная из [11, очень хорошо отражает существо и принципиальные закономерности сложного нелинейного неравновесного химического процесса. Представим себе поток воды, стекающий с некоторого озера, расположенного на вершине холма. Даже точное и полное знание рельефа склонов не позволяет однозначно найти характеристики стоков. В каждой точке рельефа течение определяется не только локальными особенностями рельефа, но и предысторией процесса (т. е. рельефом в целом). Наличие поперечных перетоков (нелинейные связи), возможность течения воды по направлениям, обеспечивающим локально более высокую скорость, но менее благоприятных в целом (маршруты реакции), и т. д. и т. п. — все это проявления локальной псевдопотенциальности, не позволяющие описать процесс однозначно. Ясно, что с ростом скорости потока (зависящей в числе прочего и от массы воды в озере) эти трудности усугубляются (высокая неравновесность), с падением же скорости (малая масса воды в озере, пологий рельеф) процесс приближается к равновесному, и его особенности могут быть учтены все более и более строго (в том числе и в рамках линейного приближения). [c.103]

    Такое математическое описание представляет собой систему уравнений, выражающих для выбранных процесса и аппарата законы сохранения массы и энергии — материальные балансы по отдельным химическим веществам, балансы тепла и кинетической. энергии потока. Эти балансы записывают для элементарных объемов аппарата, поэтому полученные математические описания представляют собой систему дифференциальных уравнений в частных или полных Ароизводных и лишь иногда — систему алгебраических уравнений. [c.53]

    Закон сохранения энергии. Исходя из общего принципа сохра-испця материи и движения, Ломоносов в 1760 г. сформулировал закон сохранения энергии. Этот закон был экснеримеитально нод-твсржден в 1842 г., когда Роберт Майер определил эквивалентные соотношения между различными видами энергии. Очевидно, что применение закона сохранения энергии имеет смысл ири рассмотрении процессов, происходяии-1х в замкнутых системах. В частности, для химических реакций закон сохранения энергии выразится с л е д I о щим обр а з о м  [c.13]

    Закон Гесса был установлен эмпирическим путем. Он строго выполняется только прн условии, что химические процессы протекают п[)и постоянном обьеме нли нри постоянном давлении. Для этих условии закон Гесса легко выводится из общего закона сохранения энергии, который установлен позднее, чем закон Гесса. В самом деле, если количества энергии, выделяющиеся при осуществлении химического процесса, идущего различными путями, были бы неодинаковы, то можно было бы получить энергию из ничего, направляя п1)ямой ироцссе но одному пути, а обратный ио другому. [c.79]

    По реакциям алкилирования аминокислот можно сделать некоторые выводы. Во-нервых, хотя конечный продукт один и тот же, методология его синтеза химическим путем и в живом организме существенно различны. Тем не менее они подчиняются одним и тем же физическим законам термодинамическим законам, законам сохранения вещества и энергии и др. Во-вторых, ирименение химических методов при конструировании соединений, пригодных для биологических систем, составляет основу подхода ири разработке биохимических тестов (т. е. моделей, которые биологи могли бы использовать ири изучении процессов жизнедеятельности), а также нри поиске соединений, обладающих фармакологическим действием (т. е, таких, которые эффективно действуют, направляя патологические химические процессы в нормальное русло). Для достижения этих целей оказались полезными не только реакции алкилирования, но и другие реакции. Наиример, сульфонилироваиие концевой аминогруииы [c.51]


Смотреть страницы где упоминается термин Закон сохранения энергии. Химическая энергия: [c.107]    [c.48]    [c.212]    [c.47]    [c.268]    [c.185]    [c.7]   
Смотреть главы в:

Химия с сельскохозяйственным анализом -> Закон сохранения энергии. Химическая энергия

Химия с сельскохозяйственным анализом -> Закон сохранения энергии. Химическая энергия

Химия -> Закон сохранения энергии. Химическая энергия




ПОИСК





Смотрите так же термины и статьи:

Закон сохранения

Закон сохранения энергии

Закон энергии

Сохранение энергии

Химическая энергия



© 2025 chem21.info Реклама на сайте